These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35113677)

  • 1. Development of machine learning prediction models to explore nutrients predictive of cardiovascular disease using Canadian linked population-based data.
    Morgenstern JD; Rosella LC; Costa AP; Anderson LN
    Appl Physiol Nutr Metab; 2022 May; 47(5):529-546. PubMed ID: 35113677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants.
    Alaa AM; Bolton T; Di Angelantonio E; Rudd JHF; van der Schaar M
    PLoS One; 2019; 14(5):e0213653. PubMed ID: 31091238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk (2002-2012): the ATTICA study.
    Panaretos D; Koloverou E; Dimopoulos AC; Kouli GM; Vamvakari M; Tzavelas G; Pitsavos C; Panagiotakos DB
    Br J Nutr; 2018 Aug; 120(3):326-334. PubMed ID: 29789037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk.
    Dimopoulos AC; Nikolaidou M; Caballero FF; Engchuan W; Sanchez-Niubo A; Arndt H; Ayuso-Mateos JL; Haro JM; Chatterji S; Georgousopoulou EN; Pitsavos C; Panagiotakos DB
    BMC Med Res Methodol; 2018 Dec; 18(1):179. PubMed ID: 30594138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consistency of variety of machine learning and statistical models in predicting clinical risks of individual patients: longitudinal cohort study using cardiovascular disease as exemplar.
    Li Y; Sperrin M; Ashcroft DM; van Staa TP
    BMJ; 2020 Nov; 371():m3919. PubMed ID: 33148619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Australian Adults at High Risk of Cardiovascular Disease Mortality Using Standard Risk Factors and Machine Learning.
    Sajeev S; Champion S; Beleigoli A; Chew D; Reed RL; Magliano DJ; Shaw JE; Milne RL; Appleton S; Gill TK; Maeder A
    Int J Environ Res Public Health; 2021 Mar; 18(6):. PubMed ID: 33808743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning with sparse nutrition data to improve cardiovascular mortality risk prediction in the USA using nationally randomly sampled data.
    Rigdon J; Basu S
    BMJ Open; 2019 Nov; 9(11):e032703. PubMed ID: 31784446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning-based model for predicting 1 year mortality of hospitalized patients with heart failure.
    Tohyama T; Ide T; Ikeda M; Kaku H; Enzan N; Matsushima S; Funakoshi K; Kishimoto J; Todaka K; Tsutsui H
    ESC Heart Fail; 2021 Oct; 8(5):4077-4085. PubMed ID: 34390311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Cardiovascular Disease Prediction Model Based on Routine Physical Examination Indicators Using Machine Learning Methods: A Cohort Study.
    Qian X; Li Y; Zhang X; Guo H; He J; Wang X; Yan Y; Ma J; Ma R; Guo S
    Front Cardiovasc Med; 2022; 9():854287. PubMed ID: 35783868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Machine Learning Methods With National Cardiovascular Data Registry Models for Prediction of Risk of Bleeding After Percutaneous Coronary Intervention.
    Mortazavi BJ; Bucholz EM; Desai NR; Huang C; Curtis JP; Masoudi FA; Shaw RE; Negahban SN; Krumholz HM
    JAMA Netw Open; 2019 Jul; 2(7):e196835. PubMed ID: 31290991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating and mitigating bias in machine learning models for cardiovascular disease prediction.
    Li F; Wu P; Ong HH; Peterson JF; Wei WQ; Zhao J
    J Biomed Inform; 2023 Feb; 138():104294. PubMed ID: 36706849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting cardiovascular risk from national administrative databases using a combined survival analysis and deep learning approach.
    Barbieri S; Mehta S; Wu B; Bharat C; Poppe K; Jorm L; Jackson R
    Int J Epidemiol; 2022 Jun; 51(3):931-944. PubMed ID: 34910160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiovascular disease incidence prediction by machine learning and statistical techniques: a 16-year cohort study from eastern Mediterranean region.
    Mehrabani-Zeinabad K; Feizi A; Sadeghi M; Roohafza H; Talaei M; Sarrafzadegan N
    BMC Med Inform Decis Mak; 2023 Apr; 23(1):72. PubMed ID: 37076833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium, added sugar and saturated fat intake in relation to mortality and CVD events in adults: Canadian National Nutrition Survey linked with vital statistics and health administrative databases.
    Jessri M; Hennessey D; Bader Eddeen A; Bennett C; Zhang Z; Yang Q; Sanmartin C; Manuel D
    Br J Nutr; 2023 May; 129(10):1740-1750. PubMed ID: 35392993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiovascular risk assessment using ASCVD risk score in fibromyalgia: a single-centre, retrospective study using "traditional" case control methodology and "novel" machine learning.
    Surendran S; Mithun CB; Moni M; Tiwari A; Pradeep M
    Adv Rheumatol; 2021 Nov; 61(1):72. PubMed ID: 34838137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein consumption in Canadian habitual diets: usual intake, inadequacy, and the contribution of animal- and plant-based foods to nutrient intakes.
    Auclair O; Burgos SA
    Appl Physiol Nutr Metab; 2021 May; 46(5):501-510. PubMed ID: 33216633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospects and Pitfalls of Machine Learning in Nutritional Epidemiology.
    Russo S; Bonassi S
    Nutrients; 2022 Apr; 14(9):. PubMed ID: 35565673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning.
    Dinh A; Miertschin S; Young A; Mohanty SD
    BMC Med Inform Decis Mak; 2019 Nov; 19(1):211. PubMed ID: 31694707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning Outperforms ACC / AHA CVD Risk Calculator in MESA.
    Kakadiaris IA; Vrigkas M; Yen AA; Kuznetsova T; Budoff M; Naghavi M
    J Am Heart Assoc; 2018 Nov; 7(22):e009476. PubMed ID: 30571498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiovascular Disease Population Risk Tool (CVDPoRT): predictive algorithm for assessing CVD risk in the community setting. A study protocol.
    Taljaard M; Tuna M; Bennett C; Perez R; Rosella L; Tu JV; Sanmartin C; Hennessy D; Tanuseputro P; Lebenbaum M; Manuel DG
    BMJ Open; 2014 Oct; 4(10):e006701. PubMed ID: 25341454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.