These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 35113810)

  • 1. Maladaptive functional changes in alveolar fibroblasts due to perinatal hyperoxia impair epithelial differentiation.
    Riccetti MR; Ushakumary MG; Waltamath M; Green J; Snowball J; Dautel SE; Endale M; Lami B; Woods J; Ahlfeld SK; Perl AT
    JCI Insight; 2022 Mar; 7(5):. PubMed ID: 35113810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Regulation of GH-IGF1 Signaling in Injury and Recovery in Hyperoxia-Induced Neonatal Lung Injury.
    Vohlen C; Mohr J; Fomenko A; Kuiper-Makris C; Grzembke T; Aydogmus R; Wilke R; Hirani D; Dötsch J; Alejandre Alcazar MA
    Cells; 2021 Oct; 10(11):. PubMed ID: 34831169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prenatal FGFR2 Signaling via PI3K/AKT Specifies the PDGFRA
    Riccetti MR; Green J; Taylor TJ; Perl AT
    Am J Respir Cell Mol Biol; 2024 Jan; 70(1):63-77. PubMed ID: 37734036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neonatal periostin knockout mice are protected from hyperoxia-induced alveolar simplication.
    Bozyk PD; Bentley JK; Popova AP; Anyanwu AC; Linn MD; Goldsmith AM; Pryhuber GS; Moore BB; Hershenson MB
    PLoS One; 2012; 7(2):e31336. PubMed ID: 22363622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting p16
    Zysman M; Baptista BR; Essari LA; Taghizadeh S; Thibault de Ménonville C; Giffard C; Issa A; Franco-Montoya ML; Breau M; Souktani R; Aissat A; Caeymaex L; Lizé M; Van Nhieu JT; Jung C; Rottier R; Cruzeiro MD; Adnot S; Epaud R; Chabot F; Lanone S; Boczkowski J; Boyer L
    Am J Respir Crit Care Med; 2020 Oct; 202(8):1088-1104. PubMed ID: 32628504
    [No Abstract]   [Full Text] [Related]  

  • 6. Sex-specific differences in primary neonatal murine lung fibroblasts exposed to hyperoxia in vitro: implications for bronchopulmonary dysplasia.
    Balaji S; Dong X; Li H; Zhang Y; Steen E; Lingappan K
    Physiol Genomics; 2018 Nov; 50(11):940-946. PubMed ID: 30169132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Posttranslational modification of β-catenin is associated with pathogenic fibroblastic changes in bronchopulmonary dysplasia.
    Sucre JM; Vijayaraj P; Aros CJ; Wilkinson D; Paul M; Dunn B; Guttentag SH; Gomperts BN
    Am J Physiol Lung Cell Mol Physiol; 2017 Feb; 312(2):L186-L195. PubMed ID: 27941077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia.
    Alejandre-Alcázar MA; Kwapiszewska G; Reiss I; Amarie OV; Marsh LM; Sevilla-Pérez J; Wygrecka M; Eul B; Köbrich S; Hesse M; Schermuly RT; Seeger W; Eickelberg O; Morty RE
    Am J Physiol Lung Cell Mol Physiol; 2007 Feb; 292(2):L537-49. PubMed ID: 17071723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curcumin augments lung maturation, preventing neonatal lung injury by inhibiting TGF-β signaling.
    Sakurai R; Li Y; Torday JS; Rehan VK
    Am J Physiol Lung Cell Mol Physiol; 2011 Nov; 301(5):L721-30. PubMed ID: 21821729
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Li R; Bernau K; Sandbo N; Gu J; Preissl S; Sun X
    Elife; 2018 Sep; 7():. PubMed ID: 30178747
    [No Abstract]   [Full Text] [Related]  

  • 11. Caffeine administration modulates TGF-β signaling but does not attenuate blunted alveolarization in a hyperoxia-based mouse model of bronchopulmonary dysplasia.
    Rath P; Nardiello C; Surate Solaligue DE; Agius R; Mižíková I; Hühn S; Mayer K; Vadász I; Herold S; Runkel F; Seeger W; Morty RE
    Pediatr Res; 2017 May; 81(5):795-805. PubMed ID: 28141790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced platelet-derived growth factor receptor expression is a primary feature of human bronchopulmonary dysplasia.
    Popova AP; Bentley JK; Cui TX; Richardson MN; Linn MJ; Lei J; Chen Q; Goldsmith AM; Pryhuber GS; Hershenson MB
    Am J Physiol Lung Cell Mol Physiol; 2014 Aug; 307(3):L231-9. PubMed ID: 24907056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperoxia Injury in the Developing Lung Is Mediated by Mesenchymal Expression of Wnt5A.
    Sucre JMS; Vickers KC; Benjamin JT; Plosa EJ; Jetter CS; Cutrone A; Ransom M; Anderson Z; Sheng Q; Fensterheim BA; Ambalavanan N; Millis B; Lee E; Zijlstra A; Königshoff M; Blackwell TS; Guttentag SH
    Am J Respir Crit Care Med; 2020 May; 201(10):1249-1262. PubMed ID: 32023086
    [No Abstract]   [Full Text] [Related]  

  • 14. Hedgehog and Platelet-derived Growth Factor Signaling Intersect during Postnatal Lung Development.
    Yie TA; Loomis CA; Nowatzky J; Khodadadi-Jamayran A; Lin Z; Cammer M; Barnett C; Mezzano V; Alu M; Novick JA; Munger JS; Kugler MC
    Am J Respir Cell Mol Biol; 2023 May; 68(5):523-536. PubMed ID: 36693140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting miR-34a/
    Ruiz-Camp J; Quantius J; Lignelli E; Arndt PF; Palumbo F; Nardiello C; Surate Solaligue DE; Sakkas E; Mižíková I; Rodríguez-Castillo JA; Vadász I; Richardson WD; Ahlbrecht K; Herold S; Seeger W; Morty RE
    EMBO Mol Med; 2019 Mar; 11(3):. PubMed ID: 30770339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cathepsin S deficiency confers protection from neonatal hyperoxia-induced lung injury.
    Hirakawa H; Pierce RA; Bingol-Karakoc G; Karaaslan C; Weng M; Shi GP; Saad A; Weber E; Mariani TJ; Starcher B; Shapiro SD; Cataltepe S
    Am J Respir Crit Care Med; 2007 Oct; 176(8):778-85. PubMed ID: 17673697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fgf10 deficiency is causative for lethality in a mouse model of bronchopulmonary dysplasia.
    Chao CM; Yahya F; Moiseenko A; Tiozzo C; Shrestha A; Ahmadvand N; El Agha E; Quantius J; Dilai S; Kheirollahi V; Jones M; Wilhem J; Carraro G; Ehrhardt H; Zimmer KP; Barreto G; Ahlbrecht K; Morty RE; Herold S; Abellar RG; Seeger W; Schermuly R; Zhang JS; Minoo P; Bellusci S
    J Pathol; 2017 Jan; 241(1):91-103. PubMed ID: 27770432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interleukin-11 Is Involved in Hyperoxia-induced Bronchopulmonary Dysplasia in Newborn Mice by Mediating Epithelium-Fibroblast Cross-talk.
    Zhu H; Zhang R; Bao T; Ma M; Li J; Cao L; Yu B; Hu J; Tian Z
    Inflammation; 2024 Jul; ():. PubMed ID: 39046604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting glycogen synthase kinase-3β to prevent hyperoxia-induced lung injury in neonatal rats.
    Hummler SC; Rong M; Chen S; Hehre D; Alapati D; Wu S
    Am J Respir Cell Mol Biol; 2013 May; 48(5):578-88. PubMed ID: 23328640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neonatal hyperoxia induces activated pulmonary cellular states and sex-dependent transcriptomic changes in a model of experimental bronchopulmonary dysplasia.
    Xia S; Vila Ellis L; Winkley K; Menden H; Mabry SM; Venkatraman A; Louiselle D; Gibson M; Grundberg E; Chen J; Sampath V
    Am J Physiol Lung Cell Mol Physiol; 2023 Feb; 324(2):L123-L140. PubMed ID: 36537711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.