These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
10. Li R; Bernau K; Sandbo N; Gu J; Preissl S; Sun X Elife; 2018 Sep; 7():. PubMed ID: 30178747 [No Abstract] [Full Text] [Related]
11. Caffeine administration modulates TGF-β signaling but does not attenuate blunted alveolarization in a hyperoxia-based mouse model of bronchopulmonary dysplasia. Rath P; Nardiello C; Surate Solaligue DE; Agius R; Mižíková I; Hühn S; Mayer K; Vadász I; Herold S; Runkel F; Seeger W; Morty RE Pediatr Res; 2017 May; 81(5):795-805. PubMed ID: 28141790 [TBL] [Abstract][Full Text] [Related]
12. Reduced platelet-derived growth factor receptor expression is a primary feature of human bronchopulmonary dysplasia. Popova AP; Bentley JK; Cui TX; Richardson MN; Linn MJ; Lei J; Chen Q; Goldsmith AM; Pryhuber GS; Hershenson MB Am J Physiol Lung Cell Mol Physiol; 2014 Aug; 307(3):L231-9. PubMed ID: 24907056 [TBL] [Abstract][Full Text] [Related]
13. Hyperoxia Injury in the Developing Lung Is Mediated by Mesenchymal Expression of Wnt5A. Sucre JMS; Vickers KC; Benjamin JT; Plosa EJ; Jetter CS; Cutrone A; Ransom M; Anderson Z; Sheng Q; Fensterheim BA; Ambalavanan N; Millis B; Lee E; Zijlstra A; Königshoff M; Blackwell TS; Guttentag SH Am J Respir Crit Care Med; 2020 May; 201(10):1249-1262. PubMed ID: 32023086 [No Abstract] [Full Text] [Related]
14. Hedgehog and Platelet-derived Growth Factor Signaling Intersect during Postnatal Lung Development. Yie TA; Loomis CA; Nowatzky J; Khodadadi-Jamayran A; Lin Z; Cammer M; Barnett C; Mezzano V; Alu M; Novick JA; Munger JS; Kugler MC Am J Respir Cell Mol Biol; 2023 May; 68(5):523-536. PubMed ID: 36693140 [TBL] [Abstract][Full Text] [Related]
16. Cathepsin S deficiency confers protection from neonatal hyperoxia-induced lung injury. Hirakawa H; Pierce RA; Bingol-Karakoc G; Karaaslan C; Weng M; Shi GP; Saad A; Weber E; Mariani TJ; Starcher B; Shapiro SD; Cataltepe S Am J Respir Crit Care Med; 2007 Oct; 176(8):778-85. PubMed ID: 17673697 [TBL] [Abstract][Full Text] [Related]
17. Fgf10 deficiency is causative for lethality in a mouse model of bronchopulmonary dysplasia. Chao CM; Yahya F; Moiseenko A; Tiozzo C; Shrestha A; Ahmadvand N; El Agha E; Quantius J; Dilai S; Kheirollahi V; Jones M; Wilhem J; Carraro G; Ehrhardt H; Zimmer KP; Barreto G; Ahlbrecht K; Morty RE; Herold S; Abellar RG; Seeger W; Schermuly R; Zhang JS; Minoo P; Bellusci S J Pathol; 2017 Jan; 241(1):91-103. PubMed ID: 27770432 [TBL] [Abstract][Full Text] [Related]
18. Interleukin-11 Is Involved in Hyperoxia-induced Bronchopulmonary Dysplasia in Newborn Mice by Mediating Epithelium-Fibroblast Cross-talk. Zhu H; Zhang R; Bao T; Ma M; Li J; Cao L; Yu B; Hu J; Tian Z Inflammation; 2024 Jul; ():. PubMed ID: 39046604 [TBL] [Abstract][Full Text] [Related]
19. Targeting glycogen synthase kinase-3β to prevent hyperoxia-induced lung injury in neonatal rats. Hummler SC; Rong M; Chen S; Hehre D; Alapati D; Wu S Am J Respir Cell Mol Biol; 2013 May; 48(5):578-88. PubMed ID: 23328640 [TBL] [Abstract][Full Text] [Related]
20. Neonatal hyperoxia induces activated pulmonary cellular states and sex-dependent transcriptomic changes in a model of experimental bronchopulmonary dysplasia. Xia S; Vila Ellis L; Winkley K; Menden H; Mabry SM; Venkatraman A; Louiselle D; Gibson M; Grundberg E; Chen J; Sampath V Am J Physiol Lung Cell Mol Physiol; 2023 Feb; 324(2):L123-L140. PubMed ID: 36537711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]