BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35114276)

  • 1. Oncogenic Runx1-Myc axis in p53-deficient thymic lymphoma.
    Date Y; Taniuchi I; Ito K
    Gene; 2022 Apr; 819():146234. PubMed ID: 35114276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Runx1 Orchestrates Sphingolipid Metabolism and Glucocorticoid Resistance in Lymphomagenesis.
    Kilbey A; Terry A; Wotton S; Borland G; Zhang Q; Mackay N; McDonald A; Bell M; Wakelam MJ; Cameron ER; Neil JC
    J Cell Biochem; 2017 Jun; 118(6):1432-1441. PubMed ID: 27869314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Addiction to Runx1 is partially attenuated by loss of p53 in the Eµ-Myc lymphoma model.
    Borland G; Kilbey A; Hay J; Gilroy K; Terry A; Mackay N; Bell M; McDonald A; Mills K; Cameron E; Neil JC
    Oncotarget; 2016 Apr; 7(17):22973-87. PubMed ID: 27056890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RUNX1 is required for oncogenic
    Choi A; Illendula A; Pulikkan JA; Roderick JE; Tesell J; Yu J; Hermance N; Zhu LJ; Castilla LH; Bushweller JH; Kelliher MA
    Blood; 2017 Oct; 130(15):1722-1733. PubMed ID: 28790107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collaboration of MYC and RUNX2 in lymphoma simulates T-cell receptor signaling and attenuates p53 pathway activity.
    Hay J; Gilroy K; Huser C; Kilbey A; Mcdonald A; MacCallum A; Holroyd A; Cameron E; Neil JC
    J Cell Biochem; 2019 Oct; 120(10):18332-18345. PubMed ID: 31257681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined loss of PUMA and p21 accelerates c-MYC-driven lymphoma development considerably less than loss of one allele of p53.
    Valente LJ; Grabow S; Vandenberg CJ; Strasser A; Janic A
    Oncogene; 2016 Jul; 35(29):3866-71. PubMed ID: 26640149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Runx3 is required for oncogenic Myc upregulation in p53-deficient osteosarcoma.
    Otani S; Date Y; Ueno T; Ito T; Kajikawa S; Omori K; Taniuchi I; Umeda M; Komori T; Toguchida J; Ito K
    Oncogene; 2022 Jan; 41(5):683-691. PubMed ID: 34803166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of AML1/RUNX1 in T-cell malignancy induced by loss of p53.
    Shimizu K; Yamagata K; Kurokawa M; Mizutani S; Tsunematsu Y; Kitabayashi I
    Cancer Sci; 2013 Aug; 104(8):1033-8. PubMed ID: 23679839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C/ebpα represses the oncogenic Runx3-Myc axis in p53-deficient osteosarcoma development.
    Omori K; Otani S; Date Y; Ueno T; Ito T; Umeda M; Ito K
    Oncogene; 2023 Aug; 42(33):2485-2494. PubMed ID: 37402881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oncogenic c-Myc-induced lymphomagenesis is inhibited non-redundantly by the p19Arf-Mdm2-p53 and RP-Mdm2-p53 pathways.
    Meng X; Carlson NR; Dong J; Zhang Y
    Oncogene; 2015 Nov; 34(46):5709-17. PubMed ID: 25823025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of Myc oncogenic activity by nucleostemin haploinsufficiency.
    Zwolinska AK; Heagle Whiting A; Beekman C; Sedivy JM; Marine JC
    Oncogene; 2012 Jul; 31(28):3311-21. PubMed ID: 22081066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosomal location targets different MYC family gene members for oncogenic translocations.
    Gostissa M; Ranganath S; Bianco JM; Alt FW
    Proc Natl Acad Sci U S A; 2009 Feb; 106(7):2265-70. PubMed ID: 19174520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletion of Irf5 protects hematopoietic stem cells from DNA damage-induced apoptosis and suppresses γ-irradiation-induced thymic lymphomagenesis.
    Bi X; Feng D; Korczeniewska J; Alper N; Hu G; Barnes BJ
    Oncogene; 2014 Jun; 33(25):3288-97. PubMed ID: 23912454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Runx1 promotes B-cell survival and lymphoma development.
    Blyth K; Slater N; Hanlon L; Bell M; Mackay N; Stewart M; Neil JC; Cameron ER
    Blood Cells Mol Dis; 2009; 43(1):12-9. PubMed ID: 19269865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumorigenic activity of p21Waf1/Cip1 in thymic lymphoma.
    De la Cueva E; García-Cao I; Herranz M; López P; García-Palencia P; Flores JM; Serrano M; Fernández-Piqueras J; Martín-Caballero J
    Oncogene; 2006 Jul; 25(29):4128-32. PubMed ID: 16462758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional relationship between p53 and RUNX proteins.
    Bae SC; Kolinjivadi AM; Ito Y
    J Mol Cell Biol; 2019 Mar; 11(3):224-230. PubMed ID: 30535344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological blockade of Bcl-2, Bcl-x(L) and Bcl-w by the BH3 mimetic ABT-737 has only minor impact on tumour development in p53-deficient mice.
    Grabow S; Waring P; Happo L; Cook M; Mason KD; Kelly PN; Strasser A
    Cell Death Differ; 2012 Apr; 19(4):623-32. PubMed ID: 21997189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis for the tissue specificity of β-catenin oncogenesis.
    Sharma A; Sen JM
    Oncogene; 2013 Apr; 32(15):1901-9. PubMed ID: 22689057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of p53 serine 18 upregulates apoptosis to suppress Myc-induced tumorigenesis.
    Sluss HK; Gannon H; Coles AH; Shen Q; Eischen CM; Jones SN
    Mol Cancer Res; 2010 Feb; 8(2):216-22. PubMed ID: 20145032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The glucocorticoid receptor is increased in Atm-/- thymocytes and in Atm-/- thymic lymphoma cells, and its nuclear translocation counteracts c-myc expression.
    Yan M; Kuang X; Scofield VL; Shen J; Lynn WS; Wong PK
    Steroids; 2007 May; 72(5):415-21. PubMed ID: 17418878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.