These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35114276)

  • 1. Oncogenic Runx1-Myc axis in p53-deficient thymic lymphoma.
    Date Y; Taniuchi I; Ito K
    Gene; 2022 Apr; 819():146234. PubMed ID: 35114276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Runx1 Orchestrates Sphingolipid Metabolism and Glucocorticoid Resistance in Lymphomagenesis.
    Kilbey A; Terry A; Wotton S; Borland G; Zhang Q; Mackay N; McDonald A; Bell M; Wakelam MJ; Cameron ER; Neil JC
    J Cell Biochem; 2017 Jun; 118(6):1432-1441. PubMed ID: 27869314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Runx3 is required for oncogenic Myc upregulation in p53-deficient osteosarcoma.
    Otani S; Date Y; Ueno T; Ito T; Kajikawa S; Omori K; Taniuchi I; Umeda M; Komori T; Toguchida J; Ito K
    Oncogene; 2022 Jan; 41(5):683-691. PubMed ID: 34803166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Addiction to Runx1 is partially attenuated by loss of p53 in the Eµ-Myc lymphoma model.
    Borland G; Kilbey A; Hay J; Gilroy K; Terry A; Mackay N; Bell M; McDonald A; Mills K; Cameron E; Neil JC
    Oncotarget; 2016 Apr; 7(17):22973-87. PubMed ID: 27056890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RUNX1 is required for oncogenic
    Choi A; Illendula A; Pulikkan JA; Roderick JE; Tesell J; Yu J; Hermance N; Zhu LJ; Castilla LH; Bushweller JH; Kelliher MA
    Blood; 2017 Oct; 130(15):1722-1733. PubMed ID: 28790107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collaboration of MYC and RUNX2 in lymphoma simulates T-cell receptor signaling and attenuates p53 pathway activity.
    Hay J; Gilroy K; Huser C; Kilbey A; Mcdonald A; MacCallum A; Holroyd A; Cameron E; Neil JC
    J Cell Biochem; 2019 Oct; 120(10):18332-18345. PubMed ID: 31257681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined loss of PUMA and p21 accelerates c-MYC-driven lymphoma development considerably less than loss of one allele of p53.
    Valente LJ; Grabow S; Vandenberg CJ; Strasser A; Janic A
    Oncogene; 2016 Jul; 35(29):3866-71. PubMed ID: 26640149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of AML1/RUNX1 in T-cell malignancy induced by loss of p53.
    Shimizu K; Yamagata K; Kurokawa M; Mizutani S; Tsunematsu Y; Kitabayashi I
    Cancer Sci; 2013 Aug; 104(8):1033-8. PubMed ID: 23679839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C/ebpα represses the oncogenic Runx3-Myc axis in p53-deficient osteosarcoma development.
    Omori K; Otani S; Date Y; Ueno T; Ito T; Umeda M; Ito K
    Oncogene; 2023 Aug; 42(33):2485-2494. PubMed ID: 37402881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oncogenic c-Myc-induced lymphomagenesis is inhibited non-redundantly by the p19Arf-Mdm2-p53 and RP-Mdm2-p53 pathways.
    Meng X; Carlson NR; Dong J; Zhang Y
    Oncogene; 2015 Nov; 34(46):5709-17. PubMed ID: 25823025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of Myc oncogenic activity by nucleostemin haploinsufficiency.
    Zwolinska AK; Heagle Whiting A; Beekman C; Sedivy JM; Marine JC
    Oncogene; 2012 Jul; 31(28):3311-21. PubMed ID: 22081066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosomal location targets different MYC family gene members for oncogenic translocations.
    Gostissa M; Ranganath S; Bianco JM; Alt FW
    Proc Natl Acad Sci U S A; 2009 Feb; 106(7):2265-70. PubMed ID: 19174520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletion of Irf5 protects hematopoietic stem cells from DNA damage-induced apoptosis and suppresses γ-irradiation-induced thymic lymphomagenesis.
    Bi X; Feng D; Korczeniewska J; Alper N; Hu G; Barnes BJ
    Oncogene; 2014 Jun; 33(25):3288-97. PubMed ID: 23912454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Runx1 promotes B-cell survival and lymphoma development.
    Blyth K; Slater N; Hanlon L; Bell M; Mackay N; Stewart M; Neil JC; Cameron ER
    Blood Cells Mol Dis; 2009; 43(1):12-9. PubMed ID: 19269865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumorigenic activity of p21Waf1/Cip1 in thymic lymphoma.
    De la Cueva E; García-Cao I; Herranz M; López P; García-Palencia P; Flores JM; Serrano M; Fernández-Piqueras J; Martín-Caballero J
    Oncogene; 2006 Jul; 25(29):4128-32. PubMed ID: 16462758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional relationship between p53 and RUNX proteins.
    Bae SC; Kolinjivadi AM; Ito Y
    J Mol Cell Biol; 2019 Mar; 11(3):224-230. PubMed ID: 30535344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular basis for the tissue specificity of β-catenin oncogenesis.
    Sharma A; Sen JM
    Oncogene; 2013 Apr; 32(15):1901-9. PubMed ID: 22689057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological blockade of Bcl-2, Bcl-x(L) and Bcl-w by the BH3 mimetic ABT-737 has only minor impact on tumour development in p53-deficient mice.
    Grabow S; Waring P; Happo L; Cook M; Mason KD; Kelly PN; Strasser A
    Cell Death Differ; 2012 Apr; 19(4):623-32. PubMed ID: 21997189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myc upregulates Ggct, γ-glutamylcyclotransferase to promote development of p53-deficient osteosarcoma.
    Ueno T; Otani S; Date Y; Katsuma Y; Nagayoshi Y; Ito T; Ii H; Kageyama S; Nakata S; Ito K
    Cancer Sci; 2024 Sep; 115(9):2961-2971. PubMed ID: 38924236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of p53 serine 18 upregulates apoptosis to suppress Myc-induced tumorigenesis.
    Sluss HK; Gannon H; Coles AH; Shen Q; Eischen CM; Jones SN
    Mol Cancer Res; 2010 Feb; 8(2):216-22. PubMed ID: 20145032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.