These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 35114366)

  • 21. Sustainable valorization of algae biomass via thermochemical processing route: An overview.
    Ayub HMU; Ahmed A; Lam SS; Lee J; Show PL; Park YK
    Bioresour Technol; 2022 Jan; 344(Pt B):126399. PubMed ID: 34822981
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future.
    Fatma S; Hameed A; Noman M; Ahmed T; Shahid M; Tariq M; Sohail I; Tabassum R
    Protein Pept Lett; 2018; 25(2):148-163. PubMed ID: 29359659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mini review on renewable sources for biofuel.
    Ho DP; Ngo HH; Guo W
    Bioresour Technol; 2014 Oct; 169():742-749. PubMed ID: 25115598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Farm systems assessment of bioenergy feedstock production: Integrating bio-economic models and life cycle analysis approaches.
    Glithero NJ; Ramsden SJ; Wilson P
    Agric Syst; 2012 Jun; 109():53-64. PubMed ID: 25540473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives.
    Ambaye TG; Vaccari M; Bonilla-Petriciolet A; Prasad S; van Hullebusch ED; Rtimi S
    J Environ Manage; 2021 Jul; 290():112627. PubMed ID: 33991767
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances in pretreatment of lignocellulosic biomass for bioenergy production: Challenges and perspectives.
    Zhao L; Sun ZF; Zhang CC; Nan J; Ren NQ; Lee DJ; Chen C
    Bioresour Technol; 2022 Jan; 343():126123. PubMed ID: 34653621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Palm oil and its wastes as bioenergy sources: a comprehensive review.
    Mahlia TMI; Ismail N; Hossain N; Silitonga AS; Shamsuddin AH
    Environ Sci Pollut Res Int; 2019 May; 26(15):14849-14866. PubMed ID: 30937750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biofuels and the role of space in sustainable innovation journeys.
    Raman S; Mohr A
    J Clean Prod; 2014 Feb; 65(100):224-233. PubMed ID: 24748726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomass Energy in Malaysia: Current Scenario, Policies, and Implementation Challenges.
    Rashidi NA; Chai YH; Yusup S
    Bioenergy Res; 2022; 15(3):1371-1386. PubMed ID: 35079317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A review on microbial lipids as a potential biofuel.
    Shields-Menard SA; Amirsadeghi M; French WT; Boopathy R
    Bioresour Technol; 2018 Jul; 259():451-460. PubMed ID: 29580729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions among bioenergy feedstock choices, landscape dynamics, and land use.
    Dale VH; Kline KL; Wright LL; Perlack RD; Downing M; Graham RL
    Ecol Appl; 2011 Jun; 21(4):1039-54. PubMed ID: 21774412
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Addressing the energy crisis: using microbes to make biofuels.
    Ramos JL; Pakuts B; Godoy P; García-Franco A; Duque E
    Microb Biotechnol; 2022 Apr; 15(4):1026-1030. PubMed ID: 35298878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sustainable bioenergy production from marginal lands in the US Midwest.
    Gelfand I; Sahajpal R; Zhang X; Izaurralde RC; Gross KL; Robertson GP
    Nature; 2013 Jan; 493(7433):514-7. PubMed ID: 23334409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The global energy matrix and use of agricultural residues for bioenergy production: A review with inspiring insights that aim to contribute to deliver solutions for society and industrial sectors through suggestions for future research.
    Ribeiro GF; Junior AB
    Waste Manag Res; 2023 Aug; 41(8):1283-1304. PubMed ID: 36856060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: a cascade approach for sustainable bioenergy.
    Karpagam R; Jawaharraj K; Gnanam R
    Sci Total Environ; 2021 Apr; 766():144236. PubMed ID: 33422843
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Economics of Biofuel Production: A Case of Sorghum and Pearl Millet in India.
    Reddy MG; Reddy BS
    Methods Mol Biol; 2021; 2290():287-316. PubMed ID: 34009597
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomass utilization and production of biofuels from carbon neutral materials.
    Srivastava RK; Shetti NP; Reddy KR; Kwon EE; Nadagouda MN; Aminabhavi TM
    Environ Pollut; 2021 May; 276():116731. PubMed ID: 33607352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial optimization of cropping pattern for sustainable food and biofuel production with minimal downstream pollution.
    Femeena PV; Sudheer KP; Cibin R; Chaubey I
    J Environ Manage; 2018 Apr; 212():198-209. PubMed ID: 29432999
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sustainable Bioenergy from Biofuel Residues and Waste.
    Sheehan NP; Plante L; Martinez E; Murray K; Bier P; Ouellette C
    Water Environ Res; 2018 Oct; 90(10):1073-1090. PubMed ID: 30126479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biofuels from wastes in Marmara Region, Turkey: potentials and constraints.
    Ocak S; Acar S
    Environ Sci Pollut Res Int; 2021 Dec; 28(46):66026-66042. PubMed ID: 34324148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.