BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 35114372)

  • 1. Oxygen self-supplied enzyme nanogels for tumor targeting with amplified synergistic starvation and photodynamic therapy.
    Fan X; Luo Z; Chen Y; Yeo JCC; Li Z; Wu YL; He C
    Acta Biomater; 2022 Apr; 142():274-283. PubMed ID: 35114372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondria targeted composite enzyme nanogels for synergistic starvation and photodynamic therapy.
    Luo Z; Fan X; Chen Y; Lai X; Li Z; Wu YL; He C
    Nanoscale; 2021 Nov; 13(42):17737-17745. PubMed ID: 34697618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer Cell Membrane Camouflaged Cascade Bioreactor for Cancer Targeted Starvation and Photodynamic Therapy.
    Li SY; Cheng H; Xie BR; Qiu WX; Zeng JY; Li CX; Wan SS; Zhang L; Liu WL; Zhang XZ
    ACS Nano; 2017 Jul; 11(7):7006-7018. PubMed ID: 28665106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic Cascade Polymer Nanoreactors for Starvation and Photodynamic Cancer Therapy.
    Liu S; Yan T; Sun J; Li F; Xu J; Sun H; Yu S; Liu J
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cascade-Catalyzed Nanogel for Amplifying Starvation Therapy by Nitric Oxide-Mediated Hypoxia Alleviation.
    Wang W; Niu Y; Zhang N; Wan Y; Xiao Y; Zhao L; Zhao B; Chen W; Huang D
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):17313-17322. PubMed ID: 38534029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoclustered Cascaded Enzymes for Targeted Tumor Starvation and Deoxygenation-Activated Chemotherapy without Systemic Toxicity.
    Ma Y; Zhao Y; Bejjanki NK; Tang X; Jiang W; Dou J; Khan MI; Wang Q; Xia J; Liu H; You YZ; Zhang G; Wang Y; Wang J
    ACS Nano; 2019 Aug; 13(8):8890-8902. PubMed ID: 31291092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug-Induced Self-Assembly Cascade Nanoreactor for Synergistic Tumor Therapy.
    Wang W; Wang Y; Ma M; Jin HJ; Li X
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44029-44038. PubMed ID: 36153981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen-producing catalase-based prodrug nanoparticles overcoming resistance in hypoxia-mediated chemo-photodynamic therapy.
    Cheng X; He L; Xu J; Fang Q; Yang L; Xue Y; Wang X; Tang R
    Acta Biomater; 2020 Aug; 112():234-249. PubMed ID: 32502633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pd@Pt-GOx/HA as a Novel Enzymatic Cascade Nanoreactor for High-Efficiency Starving-Enhanced Chemodynamic Cancer Therapy.
    Ming J; Zhu T; Yang W; Shi Y; Huang D; Li J; Xiang S; Wang J; Chen X; Zheng N
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51249-51262. PubMed ID: 33161703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multifunctional cascade bioreactor based on a layered double oxides composite hydrogel for synergetic tumor chemodynamic/starvation/photothermal therapy.
    Xu R; Zhang D; Tan J; Ge N; Liu D; Liu J; Ouyang L; Zhu H; Qiao Y; Qiu J; Zhu S; Liu X
    Acta Biomater; 2022 Nov; 153():494-504. PubMed ID: 36115653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-path modulation of hydrogen peroxide to ameliorate hypoxia for enhancing photodynamic/starvation synergistic therapy.
    Liu X; Liu J; Chen S; Xie Y; Fan Q; Zhou J; Bao J; Wei T; Dai Z
    J Mater Chem B; 2020 Nov; 8(43):9933-9942. PubMed ID: 33034312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-responsive dynamically cross-linked nanogels with effective endo-lysosomal escape for synergetic cancer therapy based on intracellular co-delivery of photosensitizers and proteins.
    Yang HY; Jang MS; Li Y; Du JM; Liu C; Lee JH; Fu Y
    Colloids Surf B Biointerfaces; 2022 Sep; 217():112638. PubMed ID: 35772354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peroxisome inspired hybrid enzyme nanogels for chemodynamic and photodynamic therapy.
    Qin X; Wu C; Niu D; Qin L; Wang X; Wang Q; Li Y
    Nat Commun; 2021 Sep; 12(1):5243. PubMed ID: 34475406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose Oxidase-Polymer Nanogels for Synergistic Cancer-Starving and Oxidation Therapy.
    Zhao W; Hu J; Gao W
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23528-23535. PubMed ID: 28650613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust O
    Wu CY; Hsu YH; Chen Y; Yang LC; Tseng SC; Chen WR; Huang CC; Wan D
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38090-38104. PubMed ID: 34342219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasmall Au/Pt-loaded biocompatible albumin nanospheres to enhance photodynamic/catalytic therapy via triple amplification of glucose-oxidase/catalase/peroxidase.
    Hao R; Zhang G; Zhang J; Zeng L
    J Colloid Interface Sci; 2024 Jan; 654(Pt A):212-223. PubMed ID: 37839238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Dual Functional Nanoreactor for Synergistic Starvation and Photodynamic Therapy.
    Zhu Y; Shi H; Li T; Yu J; Guo Z; Cheng J; Liu Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18309-18318. PubMed ID: 32233414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis.
    Yu Z; Zhou P; Pan W; Li N; Tang B
    Nat Commun; 2018 Nov; 9(1):5044. PubMed ID: 30487569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose Oxidase Integrated Porphyrinic Covalent Organic Polymers for Combined Photodynamic/Chemodynamic/Starvation Therapy in Cancer Treatment.
    Zhang J; Yang J; Qin X; Zhuang J; Jing D; Ding Y; Lu B; Wang Y; Chen T; Yao Y
    ACS Biomater Sci Eng; 2022 May; 8(5):1956-1963. PubMed ID: 35412788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dumbbell-shaped bimetallic AuPd nanoenzymes for NIR-II cascade catalysis-photothermal synergistic therapy.
    Tang Z; Hou Y; Huang S; Hosmane NS; Cui M; Li X; Suhail M; Zhang H; Ge J; Iqbal MZ; Kong X
    Acta Biomater; 2024 Mar; 177():431-443. PubMed ID: 38307478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.