These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35114518)

  • 1. Insight into the role of temperature, time and pH in the effective zirconium retention using clay minerals.
    Pavón E; Alba MD
    J Environ Manage; 2022 Apr; 308():114635. PubMed ID: 35114518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zirconium retention for minimizing environmental risk: Role of counterion and clay mineral.
    Montes L; Pavón E; Cota A; Alba MD
    Chemosphere; 2021 Mar; 267():128914. PubMed ID: 33213875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zirconium-modified natural clays for phosphate removal: Effect of clay minerals.
    Huo J; Min X; Wang Y
    Environ Res; 2021 Mar; 194():110685. PubMed ID: 33428913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay.
    Anirudhan TS; Bringle CD; Rijith S
    J Environ Radioact; 2010 Mar; 101(3):267-76. PubMed ID: 20045229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experience of on-site disposal of production uranium-graphite nuclear reactor.
    Pavliuk AO; Kotlyarevskiy SG; Bespala EV; Zakharova EV; Ermolaev VM; Volkova AG
    J Environ Radioact; 2018 Apr; 184-185():22-31. PubMed ID: 29331559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Building the bridge between U(VI) and Ca-bentonite - Influence of concentration, ionic strength, pH, clay composition and competing ions.
    Brix K; Baur S; Haben A; Kautenburger R
    Chemosphere; 2021 Dec; 285():131445. PubMed ID: 34265724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement Properties of Zr Modified Porous Clay Heterostructures for Adsorption of Basic-Blue 41 Dye: Equilibrium, Regeneration, and Single Batch Design Adsorber.
    Popoola SA; Al Dmour H; Rakass S; Fatimah I; Liu Y; Mohmoud A; Kooli F
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iodide uptake by negatively charged clay interlayers?
    Miller A; Kruichak J; Mills M; Wang Y
    J Environ Radioact; 2015 Sep; 147():108-14. PubMed ID: 26057987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments.
    Szecsody JE; Truex MJ; Qafoku NP; Wellman DM; Resch T; Zhong L
    J Contam Hydrol; 2013 Aug; 151():155-75. PubMed ID: 23851265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term geochemical evolution of the near field repository: insights from reactive transport modelling and experimental evidences.
    Arcos D; Grandia F; Domènech C; Fernández AM; Villar MV; Muurinen A; Carlsson T; Sellin P; Hernán P
    J Contam Hydrol; 2008 Dec; 102(3-4):196-209. PubMed ID: 18992963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of sulfonamide antimicrobial agents to clay minerals.
    Gao J; Pedersen JA
    Environ Sci Technol; 2005 Dec; 39(24):9509-16. PubMed ID: 16475329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Aeration on Mn(II) Sorbed to Clay Minerals and Its Impact on Cd Retention.
    Van Groeningen N; Christl I; Kretzschmar R
    Environ Sci Technol; 2021 Feb; 55(3):1650-1658. PubMed ID: 33444011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of porewater ionic composition on arsenate adsorption to clay minerals.
    Fakhreddine S; Fendorf S
    Sci Total Environ; 2021 Sep; 785():147096. PubMed ID: 33932669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption and desorption of uranium (VI) in aerated zone soil.
    Li X; Wu J; Liao J; Zhang D; Yang J; Feng Y; Zeng J; Wen W; Yang Y; Tang J; Liu N
    J Environ Radioact; 2013 Jan; 115():143-50. PubMed ID: 22939949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of surface complexation modeling on adsorption of uranium at water-solid interface: A review.
    Sun Y; Li Y
    Environ Pollut; 2021 Jun; 278():116861. PubMed ID: 33714063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural and engineered clays and clay minerals for the removal of poly- and perfluoroalkyl substances from water: State-of-the-art and future perspectives.
    Mukhopadhyay R; Sarkar B; Palansooriya KN; Dar JY; Bolan NS; Parikh SJ; Sonne C; Ok YS
    Adv Colloid Interface Sci; 2021 Nov; 297():102537. PubMed ID: 34624725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reducement of cadmium adsorption on clay minerals by the presence of dissolved organic matter from animal manure.
    Zhou W; Ren L; Zhu L
    Environ Pollut; 2017 Apr; 223():247-254. PubMed ID: 28108163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of Pantoea agglomerans strain and cation-modified clay minerals on the adsorption and biodegradation of phenanthrene.
    Tao K; Zhao S; Gao P; Wang L; Jia H
    Ecotoxicol Environ Saf; 2018 Oct; 161():237-244. PubMed ID: 29886310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of natural organic matter on the adsorption of metal ions onto clay minerals.
    Schmitt D; Taylor HE; Aiken GR; Roth DA; Frimmel FH
    Environ Sci Technol; 2002 Jul; 36(13):2932-8. PubMed ID: 12144270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium.
    Biswas BK; Inoue K; Ghimire KN; Harada H; Ohto K; Kawakita H
    Bioresour Technol; 2008 Dec; 99(18):8685-90. PubMed ID: 18524574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.