These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 35115022)

  • 1. Two-dimensional and three-dimensional T2 weighted imaging-based radiomic signatures for the preoperative discrimination of ovarian borderline tumors and malignant tumors.
    Liu X; Wang T; Zhang G; Hua K; Jiang H; Duan S; Jin J; Zhang H
    J Ovarian Res; 2022 Feb; 15(1):22. PubMed ID: 35115022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic resonance imaging radiomics in categorizing ovarian masses and predicting clinical outcome: a preliminary study.
    Zhang H; Mao Y; Chen X; Wu G; Liu X; Zhang P; Bai Y; Lu P; Yao W; Wang Y; Yu J; Zhang G
    Eur Radiol; 2019 Jul; 29(7):3358-3371. PubMed ID: 30963272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application Values of 2D and 3D Radiomics Models Based on CT Plain Scan in Differentiating Benign from Malignant Ovarian Tumors.
    Li S; Liu J; Xiong Y; Han Y; Pang P; Luo P; Fan B
    Biomed Res Int; 2022; 2022():5952296. PubMed ID: 35224097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods.
    Wang X; Wan Q; Chen H; Li Y; Li X
    Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressed sensing 3D T2WI radiomics model: improving diagnostic performance in muscle invasion of bladder cancer.
    Li S; Fan Z; Guo J; Li D; Chen Z; Zhang X; Wang Y; Li Y; Yang G; Wang X
    BMC Med Imaging; 2024 Jun; 24(1):148. PubMed ID: 38886638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MR-based radiomics-clinical nomogram in epithelial ovarian tumor prognosis prediction: tumor body texture analysis across various acquisition protocols.
    Wang T; Wang H; Wang Y; Liu X; Ling L; Zhang G; Yang G; Zhang H
    J Ovarian Res; 2022 Jan; 15(1):6. PubMed ID: 35022079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combined radiomics and clinical variables model for prediction of malignancy in T2 hyperintense uterine mesenchymal tumors on MRI.
    Wang T; Gong J; Li Q; Chu C; Shen W; Peng W; Gu Y; Li W
    Eur Radiol; 2021 Aug; 31(8):6125-6135. PubMed ID: 33486606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of MRI-Based Radiomics Model to Predict the Risk of Recurrence in Patients With Advanced High-Grade Serous Ovarian Carcinoma.
    Li HM; Gong J; Li RM; Xiao ZB; Qiang JW; Peng WJ; Gu YJ
    AJR Am J Roentgenol; 2021 Sep; 217(3):664-675. PubMed ID: 34259544
    [No Abstract]   [Full Text] [Related]  

  • 9. Radiomics analysis of T1WI and T2WI magnetic resonance images to differentiate between IgG4-related ophthalmic disease and orbital MALT lymphoma.
    Shao Y; Chen Y; Chen S; Wei R
    BMC Ophthalmol; 2023 Jun; 23(1):288. PubMed ID: 37353736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CT-Based Radiomics and Machine Learning for Differentiating Benign, Borderline, and Early-Stage Malignant Ovarian Tumors.
    Chen J; Liu L; He Z; Su D; Liu C
    J Imaging Inform Med; 2024 Feb; 37(1):180-195. PubMed ID: 38343232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Parametric Magnetic Resonance Imaging-Based Radiomics Analysis of Cervical Cancer for Preoperative Prediction of Lymphovascular Space Invasion.
    Huang G; Cui Y; Wang P; Ren J; Wang L; Ma Y; Jia Y; Ma X; Zhao L
    Front Oncol; 2021; 11():663370. PubMed ID: 35096556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning for the ovarian lesion localization and discrimination between borderline and malignant ovarian tumors based on routine MR imaging.
    Wang Y; Zhang H; Wang T; Yao L; Zhang G; Liu X; Yang G; Yuan L
    Sci Rep; 2023 Feb; 13(1):2770. PubMed ID: 36797331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance imaging-based radiomics analysis of the differential diagnosis of ovarian clear cell carcinoma and endometrioid carcinoma: a retrospective study.
    Takeyama N; Sasaki Y; Ueda Y; Tashiro Y; Tanaka E; Nagai K; Morioka M; Ogawa T; Tate G; Hashimoto T; Ohgiya Y
    Jpn J Radiol; 2024 Jul; 42(7):731-743. PubMed ID: 38472624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft Tissue Sarcomas: Preoperative Predictive Histopathological Grading Based on Radiomics of MRI.
    Zhang Y; Zhu Y; Shi X; Tao J; Cui J; Dai Y; Zheng M; Wang S
    Acad Radiol; 2019 Sep; 26(9):1262-1268. PubMed ID: 30377057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiomics derived from dynamic contrast-enhanced MRI pharmacokinetic protocol features: the value of precision diagnosis ovarian neoplasms.
    Song XL; Ren JL; Zhao D; Wang L; Ren H; Niu J
    Eur Radiol; 2021 Jan; 31(1):368-378. PubMed ID: 32767049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preoperative prediction of parametrial invasion in early-stage cervical cancer with MRI-based radiomics nomogram.
    Wang T; Gao T; Guo H; Wang Y; Zhou X; Tian J; Huang L; Zhang M
    Eur Radiol; 2020 Jun; 30(6):3585-3593. PubMed ID: 32065284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discriminating Between Benign and Malignant Solid Ovarian Tumors Based on Clinical and Radiomic Features of MRI.
    Zheng Y; Wang H; Li Q; Sun H; Guo L
    Acad Radiol; 2023 May; 30(5):814-822. PubMed ID: 35810066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A radiomics approach for automated diagnosis of ovarian neoplasm malignancy in computed tomography.
    Li S; Liu J; Xiong Y; Pang P; Lei P; Zou H; Zhang M; Fan B; Luo P
    Sci Rep; 2021 Apr; 11(1):8730. PubMed ID: 33888749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiomics analysis of multiparametric MRI for the preoperative evaluation of pathological grade in bladder cancer tumors.
    Wang H; Hu D; Yao H; Chen M; Li S; Chen H; Luo J; Feng Y; Guo Y
    Eur Radiol; 2019 Nov; 29(11):6182-6190. PubMed ID: 31016445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pretreatment MR imaging radiomics signatures for response prediction to induction chemotherapy in patients with nasopharyngeal carcinoma.
    Wang G; He L; Yuan C; Huang Y; Liu Z; Liang C
    Eur J Radiol; 2018 Jan; 98():100-106. PubMed ID: 29279146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.