These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35115502)

  • 1. Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows.
    Fränzl M; Cichos F
    Nat Commun; 2022 Feb; 13(1):656. PubMed ID: 35115502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmofluidic-Based Near-Field Optical Trapping of Dielectric Nano-Objects Using Gold Nanoislands Sensor Chips.
    Qiu G; Du Y; Guo Y; Meng Y; Gai Z; Zhang M; Wang J; deMello A
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47409-47419. PubMed ID: 36240070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly-Adaptable Optothermal Nanotweezers for Trapping, Sorting, and Assembling across Diverse Nanoparticles.
    Chen J; Zhou J; Peng Y; Dai X; Tan Y; Zhong Y; Li T; Zou Y; Hu R; Cui X; Ho HP; Gao BZ; Zhang H; Chen Y; Wang M; Zhang X; Qu J; Shao Y
    Adv Mater; 2024 Mar; 36(9):e2309143. PubMed ID: 37944998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling the Trajectories of Nano/Micro Particles Using Light-Actuated Marangoni Flow.
    Lv C; Varanakkottu SN; Baier T; Hardt S
    Nano Lett; 2018 Nov; 18(11):6924-6930. PubMed ID: 30285458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and versatile thermo-osmotic flows with a pinch of salt.
    Herrero C; De San Féliciano M; Merabia S; Joly L
    Nanoscale; 2022 Jan; 14(3):626-631. PubMed ID: 34989386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of hydrodynamic separation of biological objects in microchannel devices.
    Lin YC; Jen CP
    Lab Chip; 2002 Aug; 2(3):164-9. PubMed ID: 15100828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the Role of the Surfactant and the Thermophoretic Force in Plasmonic Nano-optical Trapping.
    Jiang Q; Rogez B; Claude JB; Baffou G; Wenger J
    Nano Lett; 2020 Dec; 20(12):8811-8817. PubMed ID: 33237789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-cell biomagnifier for optical nanoscopes and nanotweezers.
    Li Y; Liu X; Li B
    Light Sci Appl; 2019; 8():61. PubMed ID: 31645911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobile nanotweezers for active colloidal manipulation.
    Ghosh S; Ghosh A
    Sci Robot; 2018 Jan; 3(14):. PubMed ID: 33141698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-powered optothermal nanotweezers: Diverse bio-nanoparticle manipulation and single nucleotide identification.
    Chen J; Chen Z; Meng C; Zhou J; Peng Y; Dai X; Li J; Zhong Y; Chen X; Yuan W; Ho HP; Gao BZ; Qu J; Zhang X; Zhang H; Shao Y
    Light Sci Appl; 2023 Nov; 12(1):273. PubMed ID: 37973904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic and Plasmonic Nanotweezing of Nano- and Microscale Particles.
    Conteduca D; Dell'Olio F; Krauss TF; Ciminelli C
    Appl Spectrosc; 2017 Mar; 71(3):367-390. PubMed ID: 28287314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inkjet-Printed Biofunctional Thermo-Plasmonic Interfaces for Patterned Neuromodulation.
    Kang H; Lee GH; Jung H; Lee JW; Nam Y
    ACS Nano; 2018 Feb; 12(2):1128-1138. PubMed ID: 29402086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultraprecision Imaging and Manipulation of Plasmonic Nanostructures by Integrated Nanoscopic Correction.
    Liu Y; Zhang Z; Park Y; Lee SE
    Small; 2021 May; 17(21):e2007610. PubMed ID: 33856109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring forces between individual colloidal particles with the atomic force microscope.
    Sinha P; Popa I; Finessi M; Ruiz-Cabello FJ; Szilágyi I; Maroni P; Borkovec M
    Chimia (Aarau); 2012; 66(4):214-7. PubMed ID: 22613153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional manipulation with scanning near-field optical nanotweezers.
    Berthelot J; Aćimović SS; Juan ML; Kreuzer MP; Renger J; Quidant R
    Nat Nanotechnol; 2014 Apr; 9(4):295-9. PubMed ID: 24584272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface nano-optics with van der Waals polaritons.
    Zhang Q; Hu G; Ma W; Li P; Krasnok A; Hillenbrand R; Alù A; Qiu CW
    Nature; 2021 Sep; 597(7875):187-195. PubMed ID: 34497390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soft electrostatic trapping in nanofluidics.
    Gerspach MA; Mojarad N; Sharma D; Pfohl T; Ekinci Y
    Microsyst Nanoeng; 2017; 3():17051. PubMed ID: 31057877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AFM-Nano Manipulation of Plasmonic Molecules Used as "Nano-Lens" to Enhance Raman of Individual Nano-Objects.
    D'Orlando A; Bayle M; Louarn G; Humbert B
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.