These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 35115520)
1. Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Li H; Wang S; Chai S; Yang Z; Zhang Q; Xin H; Xu Y; Lin S; Chen X; Yao Z; Yang Q; Fei Z; Huang S; Zhang Z Nat Commun; 2022 Feb; 13(1):682. PubMed ID: 35115520 [TBL] [Abstract][Full Text] [Related]
2. Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan). Bo K; Ma Z; Chen J; Weng Y Theor Appl Genet; 2015 Jan; 128(1):25-39. PubMed ID: 25358412 [TBL] [Abstract][Full Text] [Related]
3. Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Yang L; Koo DH; Li Y; Zhang X; Luan F; Havey MJ; Jiang J; Weng Y Plant J; 2012 Sep; 71(6):895-906. PubMed ID: 22487099 [TBL] [Abstract][Full Text] [Related]
4. Genome-Wide Mapping of Structural Variations Reveals a Copy Number Variant That Determines Reproductive Morphology in Cucumber. Zhang Z; Mao L; Chen H; Bu F; Li G; Sun J; Li S; Sun H; Jiao C; Blakely R; Pan J; Cai R; Luo R; Van de Peer Y; Jacobsen E; Fei Z; Huang S Plant Cell; 2015 Jun; 27(6):1595-604. PubMed ID: 26002866 [TBL] [Abstract][Full Text] [Related]
5. Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array. Rubinstein M; Katzenellenbogen M; Eshed R; Rozen A; Katzir N; Colle M; Yang L; Grumet R; Weng Y; Sherman A; Ophir R PLoS One; 2015; 10(4):e0124101. PubMed ID: 25874931 [TBL] [Abstract][Full Text] [Related]
6. The genome sequence of the North-European cucumber (Cucumis sativus L.) unravels evolutionary adaptation mechanisms in plants. Wóycicki R; Witkowicz J; Gawroński P; Dąbrowska J; Lomsadze A; Pawełkowicz M; Siedlecka E; Yagi K; Pląder W; Seroczyńska A; Śmiech M; Gutman W; Niemirowicz-Szczytt K; Bartoszewski G; Tagashira N; Hoshi Y; Borodovsky M; Karpiński S; Malepszy S; Przybecki Z PLoS One; 2011; 6(7):e22728. PubMed ID: 21829493 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships. Zhao X; Lu J; Zhang Z; Hu J; Huang S; Jin W J Genet Genomics; 2011 Jan; 38(1):39-45. PubMed ID: 21338951 [TBL] [Abstract][Full Text] [Related]
8. QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Lu H; Lin T; Klein J; Wang S; Qi J; Zhou Q; Sun J; Zhang Z; Weng Y; Huang S Theor Appl Genet; 2014 Jul; 127(7):1491-9. PubMed ID: 24845123 [TBL] [Abstract][Full Text] [Related]
9. Recent progress on the molecular breeding of Cucumis sativus L. in China. Feng S; Zhang J; Mu Z; Wang Y; Wen C; Wu T; Yu C; Li Z; Wang H Theor Appl Genet; 2020 May; 133(5):1777-1790. PubMed ID: 31754760 [TBL] [Abstract][Full Text] [Related]
10. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Qi J; Liu X; Shen D; Miao H; Xie B; Li X; Zeng P; Wang S; Shang Y; Gu X; Du Y; Li Y; Lin T; Yuan J; Yang X; Chen J; Chen H; Xiong X; Huang K; Fei Z; Mao L; Tian L; Städler T; Renner SS; Kamoun S; Lucas WJ; Zhang Z; Huang S Nat Genet; 2013 Dec; 45(12):1510-5. PubMed ID: 24141363 [TBL] [Abstract][Full Text] [Related]
11. Whole-Genome Resequencing of a Cucumber Chromosome Segment Substitution Line and Its Recurrent Parent to Identify Candidate Genes Governing Powdery Mildew Resistance. Xu Q; Shi Y; Yu T; Xu X; Yan Y; Qi X; Chen X PLoS One; 2016; 11(10):e0164469. PubMed ID: 27764118 [TBL] [Abstract][Full Text] [Related]
12. Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Li Y; Yang L; Pathak M; Li D; He X; Weng Y Theor Appl Genet; 2011 Oct; 123(6):973-83. PubMed ID: 21735235 [TBL] [Abstract][Full Text] [Related]
13. Genetic diversity and population structure of cucumber (Cucumis sativus L.). Lv J; Qi J; Shi Q; Shen D; Zhang S; Shao G; Li H; Sun Z; Weng Y; Shang Y; Gu X; Li X; Zhu X; Zhang J; van Treuren R; van Dooijeweert W; Zhang Z; Huang S PLoS One; 2012; 7(10):e46919. PubMed ID: 23071663 [TBL] [Abstract][Full Text] [Related]
14. Next-generation sequencing, FISH mapping and synteny-based modeling reveal mechanisms of decreasing dysploidy in Cucumis. Yang L; Koo DH; Li D; Zhang T; Jiang J; Luan F; Renner SS; Hénaff E; Sanseverino W; Garcia-Mas J; Casacuberta J; Senalik DA; Simon PW; Chen J; Weng Y Plant J; 2014 Jan; 77(1):16-30. PubMed ID: 24127692 [TBL] [Abstract][Full Text] [Related]
15. Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits. Cai X; Sun X; Xu C; Sun H; Wang X; Ge C; Zhang Z; Wang Q; Fei Z; Jiao C; Wang Q Nat Commun; 2021 Dec; 12(1):7246. PubMed ID: 34903739 [TBL] [Abstract][Full Text] [Related]
16. Genetic and Transcriptomic Analysis Reveal the Molecular Basis of Photoperiod-Regulated Flowering in Xishuangbanna Cucumber ( Tian Z; Jahn M; Qin X; Obel HO; Yang F; Li J; Chen J Genes (Basel); 2021 Jul; 12(7):. PubMed ID: 34356080 [TBL] [Abstract][Full Text] [Related]
17. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Varshney RK; Thudi M; Roorkiwal M; He W; Upadhyaya HD; Yang W; Bajaj P; Cubry P; Rathore A; Jian J; Doddamani D; Khan AW; Garg V; Chitikineni A; Xu D; Gaur PM; Singh NP; Chaturvedi SK; Nadigatla GVPR; Krishnamurthy L; Dixit GP; Fikre A; Kimurto PK; Sreeman SM; Bharadwaj C; Tripathi S; Wang J; Lee SH; Edwards D; Polavarapu KKB; Penmetsa RV; Crossa J; Nguyen HT; Siddique KHM; Colmer TD; Sutton T; von Wettberg E; Vigouroux Y; Xu X; Liu X Nat Genet; 2019 May; 51(5):857-864. PubMed ID: 31036963 [TBL] [Abstract][Full Text] [Related]
18. Lost genome segments associate with trait diversity during rice domestication. Zheng X; Zhong L; Pang H; Wen S; Li F; Lou D; Ge J; Fan W; Wang T; Han Z; Qiao W; Pan X; Zhu Y; Wang J; Tang C; Wang X; Zhang J; Xu Z; Kim SR; Kohli A; Ye G; Olsen KM; Fang W; Yang Q BMC Biol; 2023 Feb; 21(1):20. PubMed ID: 36726089 [TBL] [Abstract][Full Text] [Related]
19. Pan-genome analysis of 13 Spinacia accessions reveals structural variations associated with sex chromosome evolution and domestication traits in spinach. She H; Liu Z; Xu Z; Zhang H; Wu J; Cheng F; Wang X; Qian W Plant Biotechnol J; 2024 Nov; 22(11):3102-3117. PubMed ID: 39095952 [TBL] [Abstract][Full Text] [Related]
20. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Qin P; Lu H; Du H; Wang H; Chen W; Chen Z; He Q; Ou S; Zhang H; Li X; Li X; Li Y; Liao Y; Gao Q; Tu B; Yuan H; Ma B; Wang Y; Qian Y; Fan S; Li W; Wang J; He M; Yin J; Li T; Jiang N; Chen X; Liang C; Li S Cell; 2021 Jun; 184(13):3542-3558.e16. PubMed ID: 34051138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]