BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 35115915)

  • 21. System Transparency in Shared Autonomy: A Mini Review.
    Alonso V; de la Puente P
    Front Neurorobot; 2018; 12():83. PubMed ID: 30555317
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and Electromyographic Validation of a Compliant Human-Robot Interaction Controller for Cooperative and Personalized Neurorehabilitation.
    Dalla Gasperina S; Longatelli V; Braghin F; Pedrocchi A; Gandolla M
    Front Neurorobot; 2021; 15():734130. PubMed ID: 35115915
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Configuration-Dependent Optimal Impedance Control of an Upper Extremity Stroke Rehabilitation Manipulandum.
    Ghannadi B; Sharif Razavian R; McPhee J
    Front Robot AI; 2018; 5():124. PubMed ID: 33501003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Voluntary Assist-as-Needed Controller for an Ankle Power-Assist Rehabilitation Robot.
    Yang R; Shen Z; Lyu Y; Zhuang Y; Li L; Song R
    IEEE Trans Biomed Eng; 2023 Jun; 70(6):1795-1803. PubMed ID: 37015472
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System.
    Tsai TC; Chiang MH
    Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Patient's Healthy-Limb Motion Characteristic-Based Assist-As-Needed Control Strategy for Upper-Limb Rehabilitation Robots.
    Guo B; Li Z; Huang M; Li X; Han J
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Passive Back Support Exoskeleton Improves Range of Motion Using Flexible Beams.
    Näf MB; Koopman AS; Baltrusch S; Rodriguez-Guerrero C; Vanderborght B; Lefeber D
    Front Robot AI; 2018; 5():72. PubMed ID: 33500951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Systematic review with network meta-analysis of randomized controlled trials of robotic-assisted arm training for improving activities of daily living and upper limb function after stroke.
    Mehrholz J; Pollock A; Pohl M; Kugler J; Elsner B
    J Neuroeng Rehabil; 2020 Jun; 17(1):83. PubMed ID: 32605587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human arm weight compensation in rehabilitation robotics: efficacy of three distinct methods.
    Just F; Özen Ö; Tortora S; Klamroth-Marganska V; Riener R; Rauter G
    J Neuroeng Rehabil; 2020 Feb; 17(1):13. PubMed ID: 32024528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Elbow Exoskeleton for Upper Limb Rehabilitation with Series Elastic Actuator and Cable-driven Differential.
    Chen T; Casas R; Lum PS
    IEEE Trans Robot; 2019 Dec; 35(6):1464-1474. PubMed ID: 31929766
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robot-Assisted Therapy in Upper Extremity Hemiparesis: Overview of an Evidence-Based Approach.
    Duret C; Grosmaire AG; Krebs HI
    Front Neurol; 2019; 10():412. PubMed ID: 31068898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The global burden of stroke: persistent and disabling.
    Gorelick PB
    Lancet Neurol; 2019 May; 18(5):417-418. PubMed ID: 30871943
    [No Abstract]   [Full Text] [Related]  

  • 34. Electromyography Assessment During Gait in a Robotic Exoskeleton for Acute Stroke.
    Androwis GJ; Pilkar R; Ramanujam A; Nolan KJ
    Front Neurol; 2018; 9():630. PubMed ID: 30131756
    [No Abstract]   [Full Text] [Related]  

  • 35. Automatic Setting Procedure for Exoskeleton-Assisted Overground Gait: Proof of Concept on Stroke Population.
    Gandolla M; Guanziroli E; D'Angelo A; Cannaviello G; Molteni F; Pedrocchi A
    Front Neurorobot; 2018; 12():10. PubMed ID: 29615890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feedforward model based arm weight compensation with the rehabilitation robot ARMin.
    Just F; Ozen O; Tortora S; Riener R; Rauter G
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():72-77. PubMed ID: 28813796
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Is robot-assisted therapy effective in upper extremity recovery in early stage stroke? -a systematic literature review.
    Kim G; Lim S; Kim H; Lee B; Seo S; Cho K; Lee W
    J Phys Ther Sci; 2017 Jun; 29(6):1108-1112. PubMed ID: 28626337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Repetitive task training for improving functional ability after stroke.
    French B; Thomas LH; Coupe J; McMahon NE; Connell L; Harrison J; Sutton CJ; Tishkovskaya S; Watkins CL
    Cochrane Database Syst Rev; 2016 Nov; 11(11):CD006073. PubMed ID: 27841442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stroke: a global response is needed.
    Johnson W; Onuma O; Owolabi M; Sachdev S
    Bull World Health Organ; 2016 Sep; 94(9):634-634A. PubMed ID: 27708464
    [No Abstract]   [Full Text] [Related]  

  • 40. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke.
    Veerbeek JM; Langbroek-Amersfoort AC; van Wegen EE; Meskers CG; Kwakkel G
    Neurorehabil Neural Repair; 2017 Feb; 31(2):107-121. PubMed ID: 27597165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.