BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35115991)

  • 21. Deep Learning for Detecting Cerebral Aneurysms with CT Angiography.
    Yang J; Xie M; Hu C; Alwalid O; Xu Y; Liu J; Jin T; Li C; Tu D; Liu X; Zhang C; Li C; Long X
    Radiology; 2021 Jan; 298(1):155-163. PubMed ID: 33141003
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep-Learning Detection of Cancer Metastases to the Brain on MRI.
    Zhang M; Young GS; Chen H; Li J; Qin L; McFaline-Figueroa JR; Reardon DA; Cao X; Wu X; Xu X
    J Magn Reson Imaging; 2020 Oct; 52(4):1227-1236. PubMed ID: 32167652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-View Convolutional Neural Networks in Rupture Risk Assessment of Small, Unruptured Intracranial Aneurysms.
    Ahn JH; Kim HC; Rhim JK; Park JJ; Sigmund D; Park MC; Jeong JH; Jeon JP
    J Pers Med; 2021 Mar; 11(4):. PubMed ID: 33805171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diagnostic accuracy of magnetic resonance angiography for cerebral aneurysms in correlation with 3D-digital subtraction angiographic images: a study of 133 aneurysms.
    Okahara M; Kiyosue H; Yamashita M; Nagatomi H; Hata H; Saginoya T; Sagara Y; Mori H
    Stroke; 2002 Jul; 33(7):1803-8. PubMed ID: 12105357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep Learning-Based Detection of Intracranial Aneurysms in 3D TOF-MRA.
    Sichtermann T; Faron A; Sijben R; Teichert N; Freiherr J; Wiesmann M
    AJNR Am J Neuroradiol; 2019 Jan; 40(1):25-32. PubMed ID: 30573461
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images.
    Hoar D; Lee PQ; Guida A; Patterson S; Bowen CV; Merrimen J; Wang C; Rendon R; Beyea SD; Clarke SE
    Comput Methods Programs Biomed; 2021 Oct; 210():106375. PubMed ID: 34500139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process.
    Feng W; Halm-Lutterodt NV; Tang H; Mecum A; Mesregah MK; Ma Y; Li H; Zhang F; Wu Z; Yao E; Guo X
    Int J Neural Syst; 2020 Jun; 30(6):2050032. PubMed ID: 32498641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated detection of cerebral microbleeds in MR images: A two-stage deep learning approach.
    Al-Masni MA; Kim WR; Kim EY; Noh Y; Kim DH
    Neuroimage Clin; 2020; 28():102464. PubMed ID: 33395960
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-domain convolutional neural network (MD-CNN) for radial reconstruction of dynamic cardiac MRI.
    El-Rewaidy H; Fahmy AS; Pashakhanloo F; Cai X; Kucukseymen S; Csecs I; Neisius U; Haji-Valizadeh H; Menze B; Nezafat R
    Magn Reson Med; 2021 Mar; 85(3):1195-1208. PubMed ID: 32924188
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: Suppression of rectal tubes.
    Suzuki K; Yoshida H; Näppi J; Dachman AH
    Med Phys; 2006 Oct; 33(10):3814-24. PubMed ID: 17089846
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network.
    Zong W; Lee JK; Liu C; Carver EN; Feldman AM; Janic B; Elshaikh MA; Pantelic MV; Hearshen D; Chetty IJ; Movsas B; Wen N
    Med Phys; 2020 Sep; 47(9):4077-4086. PubMed ID: 32449176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Application of convolutional neural network to risk evaluation of positive circumferential resection margin of rectal cancer by magnetic resonance imaging].
    Xu JH; Zhou XM; Ma JL; Liu SS; Zhang MS; Zheng XF; Zhang XY; Liu GW; Zhang XX; Lu Y; Wang DS
    Zhonghua Wei Chang Wai Ke Za Zhi; 2020 Jun; 23(6):572-577. PubMed ID: 32521977
    [No Abstract]   [Full Text] [Related]  

  • 34. Deep learning detection of prostate cancer recurrence with
    Lee JJ; Yang H; Franc BL; Iagaru A; Davidzon GA
    Eur J Nucl Med Mol Imaging; 2020 Dec; 47(13):2992-2997. PubMed ID: 32556481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Added diagnostic values of three-dimensional high-resolution proton density-weighted magnetic resonance imaging for unruptured intracranial aneurysms in the circle-of-Willis: Comparison with time-of-flight magnetic resonance angiography.
    Yim Y; Jung SC; Kim JY; Kim SO; Kim BJ; Lee DH; Park W; Park JC; Ahn JS
    PLoS One; 2020; 15(12):e0243235. PubMed ID: 33270756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fully automated intracranial aneurysm detection and segmentation from digital subtraction angiography series using an end-to-end spatiotemporal deep neural network.
    Jin H; Geng J; Yin Y; Hu M; Yang G; Xiang S; Zhai X; Ji Z; Fan X; Hu P; He C; Qin L; Zhang H
    J Neurointerv Surg; 2020 Oct; 12(10):1023-1027. PubMed ID: 32471827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks.
    Wang J; Fang Z; Lang N; Yuan H; Su MY; Baldi P
    Comput Biol Med; 2017 May; 84():137-146. PubMed ID: 28364643
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images.
    Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT
    Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network.
    Aldoj N; Lukas S; Dewey M; Penzkofer T
    Eur Radiol; 2020 Feb; 30(2):1243-1253. PubMed ID: 31468158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automatic detection and classification of rib fractures based on patients' CT images and clinical information via convolutional neural network.
    Zhou QQ; Tang W; Wang J; Hu ZC; Xia ZY; Zhang R; Fan X; Yong W; Yin X; Zhang B; Zhang H
    Eur Radiol; 2021 Jun; 31(6):3815-3825. PubMed ID: 33201278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.