These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 35116157)

  • 1. Unbinding ligands from SARS-CoV-2 Mpro via umbrella sampling simulations.
    Tam NM; Nguyen TH; Ngan VT; Tung NT; Ngo ST
    R Soc Open Sci; 2022 Jan; 9(1):211480. PubMed ID: 35116157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmark of Popular Free Energy Approaches Revealing the Inhibitors Binding to SARS-CoV-2 Mpro.
    Ngo ST; Tam NM; Pham MQ; Nguyen TH
    J Chem Inf Model; 2021 May; 61(5):2302-2312. PubMed ID: 33829781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some Flavolignans as Potent Sars-Cov-2 Inhibitors
    Cetin A
    Curr Comput Aided Drug Des; 2022; 18(5):337-346. PubMed ID: 35975852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Determination of Potential Inhibitors of SARS-CoV-2 Main Protease.
    Ngo ST; Quynh Anh Pham N; Thi Le L; Pham DH; Vu VV
    J Chem Inf Model; 2020 Dec; 60(12):5771-5780. PubMed ID: 32530282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Searching for potential inhibitors of SARS-COV-2 main protease using supervised learning and perturbation calculations.
    Nguyen TH; Tam NM; Tuan MV; Zhan P; Vu VV; Quang DT; Ngo ST
    Chem Phys; 2023 Jan; 564():111709. PubMed ID: 36188488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large scale peptide screening against main protease of SARS CoV-2.
    Uddin MJ; Akhter H; Chowdhury U; Mawah J; Karim ST; Jomel M; Islam MS; Islam MR; Onin LAB; Ali MA; Efaz FM; Halim MA
    J Comput Chem; 2023 Mar; 44(8):887-901. PubMed ID: 36478400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of inhibitors to the monomeric and dimeric SARS-CoV-2 Mpro.
    Tam NM; Nam PC; Quang DT; Tung NT; Vu VV; Ngo ST
    RSC Adv; 2021 Jan; 11(5):2926-2934. PubMed ID: 35424256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of alkaloids from
    Ghosh R; Chakraborty A; Biswas A; Chowdhuri S
    J Mol Struct; 2021 Apr; 1229():129489. PubMed ID: 33100380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid prediction of possible inhibitors for SARS-CoV-2 main protease using docking and FPL simulations.
    Pham MQ; Vu KB; Han Pham TN; Thuy Huong LT; Tran LH; Tung NT; Vu VV; Nguyen TH; Ngo ST
    RSC Adv; 2020 Aug; 10(53):31991-31996. PubMed ID: 35518150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing potential inhibitors of SARS-CoV-2 main protease from available drugs using free energy perturbation simulations.
    Ngo ST; Nguyen HM; Thuy Huong LT; Quan PM; Truong VK; Tung NT; Vu VV
    RSC Adv; 2020 Nov; 10(66):40284-40290. PubMed ID: 35692857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An investigation for the interaction of gamma oryzanol with the Mpro of SARS-CoV-2 to combat COVID-19: DFT, molecular docking, ADME and molecular dynamics simulations.
    Raman APS; Singh MB; Vishvakarma VK; Jain P; Kumar A; Sachdeva S; Kumari K; Singh P
    J Biomol Struct Dyn; 2023 Mar; 41(5):1919-1929. PubMed ID: 35067190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning combines atomistic simulations to predict SARS-CoV-2 Mpro inhibitors from natural compounds.
    Nguyen TH; Thai QM; Pham MQ; Minh PTH; Phung HTT
    Mol Divers; 2024 Apr; 28(2):553-561. PubMed ID: 36823394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of potential plant-based inhibitor against viral proteases of SARS-CoV-2 through molecular docking, MM-PBSA binding energy calculations and molecular dynamics simulation.
    Gogoi B; Chowdhury P; Goswami N; Gogoi N; Naiya T; Chetia P; Mahanta S; Chetia D; Tanti B; Borah P; Handique PJ
    Mol Divers; 2021 Aug; 25(3):1963-1977. PubMed ID: 33856591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Simulation of HIV Protease Inhibitors to the Main Protease (Mpro) of SARS-CoV-2: Implications for COVID-19 Drugs Design.
    Yu W; Wu X; Zhao Y; Chen C; Yang Z; Zhang X; Ren J; Wang Y; Wu C; Li C; Chen R; Wang X; Zheng W; Liao H; Yuan X
    Molecules; 2021 Dec; 26(23):. PubMed ID: 34885967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating the ligand-binding affinity via λ-dependent umbrella sampling simulations.
    Ngo ST
    J Comput Chem; 2021 Jan; 42(2):117-123. PubMed ID: 33078419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of polyphenols from
    Ghosh R; Chakraborty A; Biswas A; Chowdhuri S
    J Biomol Struct Dyn; 2021 Oct; 39(17):6747-6760. PubMed ID: 32762411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential inhibitors for SARS-CoV-2 Mpro from marine compounds.
    Tam NM; Pham MQ; Nguyen HT; Hong ND; Hien NK; Quang DT; Thu Phung HT; Ngo ST
    RSC Adv; 2021 Jun; 11(36):22206-22213. PubMed ID: 35480831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. β-Blockers bearing hydroxyethylamine and hydroxyethylene as potential SARS-CoV-2 Mpro inhibitors: rational based design,
    Hamed MIA; Darwish KM; Soltane R; Chrouda A; Mostafa A; Abo Shama NM; Elhady SS; Abulkhair HS; Khodir AE; Elmaaty AA; Al-Karmalawy AA
    RSC Adv; 2021 Oct; 11(56):35536-35558. PubMed ID: 35493159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of natural compounds with anti-SARS-CoV-2 activity via inhibition of SARS-CoV-2 Mpro.
    Bharadwaj S; Dubey A; Yadava U; Mishra SK; Kang SG; Dwivedi VD
    Brief Bioinform; 2021 Mar; 22(2):1361-1377. PubMed ID: 33406222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the ligand-binding affinity toward SARS-CoV-2 Mpro
    Ngo ST; Nguyen TH; Tung NT; Vu VV; Pham MQ; Mai BK
    Phys Chem Chem Phys; 2022 Dec; 24(48):29266-29278. PubMed ID: 36449268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.