These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 35116174)
1. Natural triterpenoids from licorice potently inhibit SARS-CoV-2 infection. Yi Y; Li J; Lai X; Zhang M; Kuang Y; Bao YO; Yu R; Hong W; Muturi E; Xue H; Wei H; Li T; Zhuang H; Qiao X; Xiang K; Yang H; Ye M J Adv Res; 2022 Feb; 36():201-210. PubMed ID: 35116174 [TBL] [Abstract][Full Text] [Related]
2. Licorice-saponin A3 is a broad-spectrum inhibitor for COVID-19 by targeting viral spike and anti-inflammation. Yi Y; Li W; Liu K; Xue H; Yu R; Zhang M; Bao YO; Lai X; Fan J; Huang Y; Wang J; Shi X; Li J; Wei H; Xiang K; Li L; Zhang R; Zhao X; Qiao X; Yang H; Ye M J Pharm Anal; 2023 May; 14(1):115-27. PubMed ID: 37363744 [TBL] [Abstract][Full Text] [Related]
3. Can Antiviral Activity of Licorice Help Fight COVID-19 Infection? Diomede L; Beeg M; Gamba A; Fumagalli O; Gobbi M; Salmona M Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34201172 [TBL] [Abstract][Full Text] [Related]
4. Multidisciplinary Approaches Identify Compounds that Bind to Human ACE2 or SARS-CoV-2 Spike Protein as Candidates to Block SARS-CoV-2-ACE2 Receptor Interactions. Day CJ; Bailly B; Guillon P; Dirr L; Jen FE; Spillings BL; Mak J; von Itzstein M; Haselhorst T; Jennings MP mBio; 2021 Mar; 12(2):. PubMed ID: 33785634 [TBL] [Abstract][Full Text] [Related]
5. In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Vardhan S; Sahoo SK Comput Biol Med; 2020 Sep; 124():103936. PubMed ID: 32738628 [TBL] [Abstract][Full Text] [Related]
6. Glycyrrhizic Acid Inhibits SARS-CoV-2 Infection by Blocking Spike Protein-Mediated Cell Attachment. Li J; Xu D; Wang L; Zhang M; Zhang G; Li E; He S Molecules; 2021 Oct; 26(20):. PubMed ID: 34684671 [TBL] [Abstract][Full Text] [Related]
7. [Anti-virus research of triterpenoids in licorice]. Pu JY; He L; Wu SY; Zhang P; Huang X Bing Du Xue Bao; 2013 Nov; 29(6):673-9. PubMed ID: 24520776 [TBL] [Abstract][Full Text] [Related]
8. Exploring Spike Protein as Potential Target of Novel Coronavirus and to Inhibit the Viability Utilizing Natural Agents. Nandi S; Roy H; Gummadi A; Saxena AK Curr Drug Targets; 2021; 22(17):2006-2020. PubMed ID: 33687893 [TBL] [Abstract][Full Text] [Related]
10. The spike-ACE2 binding assay: An in vitro platform for evaluating vaccination efficacy and for screening SARS-CoV-2 inhibitors and neutralizing antibodies. Zhang S; Gao C; Das T; Luo S; Tang H; Yao X; Cho CY; Lv J; Maravillas K; Jones V; Chen X; Huang R J Immunol Methods; 2022 Apr; 503():113244. PubMed ID: 35218866 [TBL] [Abstract][Full Text] [Related]
11. Identification of new pharmacophore against SARS-CoV-2 spike protein by multi-fold computational and biochemical techniques. Ullah A; Ullah S; Halim SA; Waqas M; Ali B; Ataya FS; El-Sabbagh NM; Batiha GE; Avula SK; Csuk R; Khan A; Al-Harrasi A Sci Rep; 2024 Feb; 14(1):3590. PubMed ID: 38351259 [TBL] [Abstract][Full Text] [Related]
12. Luteolin inhibits spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) binding to angiotensin-converting enzyme 2. Zhu J; Yan H; Shi M; Zhang M; Lu J; Wang J; Chen L; Wang Y; Li L; Miao L; Zhang H Phytother Res; 2023 Aug; 37(8):3508-3521. PubMed ID: 37166054 [TBL] [Abstract][Full Text] [Related]
13. Water extract of licorice had anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Feng Yeh C; Wang KC; Chiang LC; Shieh DE; Yen MH; San Chang J J Ethnopharmacol; 2013 Jul; 148(2):466-73. PubMed ID: 23643542 [TBL] [Abstract][Full Text] [Related]
14. The potential of glycyrrhizin and licorice extract in combating COVID-19 and associated conditions. Gomaa AA; Abdel-Wadood YA Phytomed Plus; 2021 Aug; 1(3):100043. PubMed ID: 35399823 [TBL] [Abstract][Full Text] [Related]
15. Discovery of potential small molecular SARS-CoV-2 entry blockers targeting the spike protein. Wang L; Wu Y; Yao S; Ge H; Zhu Y; Chen K; Chen WZ; Zhang Y; Zhu W; Wang HY; Guo Y; Ma PX; Ren PX; Zhang XL; Li HQ; Ali MA; Xu WQ; Jiang HL; Zhang LK; Zhu LL; Ye Y; Shang WJ; Bai F Acta Pharmacol Sin; 2022 Apr; 43(4):788-796. PubMed ID: 34349236 [TBL] [Abstract][Full Text] [Related]
16. Identification of SARS-CoV-2 Receptor Binding Inhibitors by In Vitro Screening of Drug Libraries. David AB; Diamant E; Dor E; Barnea A; Natan N; Levin L; Chapman S; Mimran LC; Epstein E; Zichel R; Torgeman A Molecules; 2021 May; 26(11):. PubMed ID: 34072087 [TBL] [Abstract][Full Text] [Related]
17. Deep learning-based network pharmacology for exploring the mechanism of licorice for the treatment of COVID-19. Fu Y; Fang Y; Gong S; Xue T; Wang P; She L; Huang J Sci Rep; 2023 Apr; 13(1):5844. PubMed ID: 37037848 [TBL] [Abstract][Full Text] [Related]
18. Active components in Ephedra sinica stapf disrupt the interaction between ACE2 and SARS-CoV-2 RBD: Potent COVID-19 therapeutic agents. Mei J; Zhou Y; Yang X; Zhang F; Liu X; Yu B J Ethnopharmacol; 2021 Oct; 278():114303. PubMed ID: 34102269 [TBL] [Abstract][Full Text] [Related]
19. Advances in Magnetic Microbead Affinity Selection Screening: Discovery of Natural Ligands to the SARS-CoV-2 Spike Protein. Muchiri RN; Kibitel J; Redick MA; van Breemen RB J Am Soc Mass Spectrom; 2022 Jan; 33(1):181-188. PubMed ID: 34939787 [TBL] [Abstract][Full Text] [Related]
20. GB-2 blocking the interaction between ACE2 and wild type and mutation of spike protein of SARS-CoV-2. Tsai MS; Yang YH; Lin YS; Chang GH; Hsu CM; Yeh RA; Shu LH; Cheng YC; Liu HT; Wu YH; Wu YH; Shen RC; Wu CY Biomed Pharmacother; 2021 Oct; 142():112011. PubMed ID: 34388530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]