These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 35116924)
1. Identifying pathological subtypes of non-small-cell lung cancer by using the radiomic features of Sha X; Gong G; Qiu Q; Duan J; Li D; Yin Y Transl Cancer Res; 2019 Sep; 8(5):1741-1749. PubMed ID: 35116924 [TBL] [Abstract][Full Text] [Related]
2. Stage-Specific PET Radiomic Prediction Model for the Histological Subtype Classification of Non-Small-Cell Lung Cancer. Ji Y; Qiu Q; Fu J; Cui K; Chen X; Xing L; Sun X Cancer Manag Res; 2021; 13():307-317. PubMed ID: 33469373 [TBL] [Abstract][Full Text] [Related]
3. Machine learning based on clinico-biological features integrated Ren C; Zhang J; Qi M; Zhang J; Zhang Y; Song S; Sun Y; Cheng J Eur J Nucl Med Mol Imaging; 2021 May; 48(5):1538-1549. PubMed ID: 33057772 [TBL] [Abstract][Full Text] [Related]
4. A subregion-based positron emission tomography/computed tomography (PET/CT) radiomics model for the classification of non-small cell lung cancer histopathological subtypes. Shen H; Chen L; Liu K; Zhao K; Li J; Yu L; Ye H; Zhu W Quant Imaging Med Surg; 2021 Jul; 11(7):2918-2932. PubMed ID: 34249623 [TBL] [Abstract][Full Text] [Related]
5. Dual-Centre Harmonised Multimodal Positron Emission Tomography/Computed Tomography Image Radiomic Features and Machine Learning Algorithms for Non-small Cell Lung Cancer Histopathological Subtype Phenotype Decoding. Khodabakhshi Z; Amini M; Hajianfar G; Oveisi M; Shiri I; Zaidi H Clin Oncol (R Coll Radiol); 2023 Nov; 35(11):713-725. PubMed ID: 37599160 [TBL] [Abstract][Full Text] [Related]
6. Predicting EGFR mutation subtypes in lung adenocarcinoma using Liu Q; Sun D; Li N; Kim J; Feng D; Huang G; Wang L; Song S Transl Lung Cancer Res; 2020 Jun; 9(3):549-562. PubMed ID: 32676319 [TBL] [Abstract][Full Text] [Related]
7. A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts ALK Rearrangement Status in Lung Adenocarcinoma. Chang C; Sun X; Wang G; Yu H; Zhao W; Ge Y; Duan S; Qian X; Wang R; Lei B; Wang L; Liu L; Ruan M; Yan H; Liu C; Chen J; Xie W Front Oncol; 2021; 11():603882. PubMed ID: 33738250 [TBL] [Abstract][Full Text] [Related]
8. Predictive Power of a Radiomic Signature Based on Li X; Yin G; Zhang Y; Dai D; Liu J; Chen P; Zhu L; Ma W; Xu W Front Oncol; 2019; 9():1062. PubMed ID: 31681597 [TBL] [Abstract][Full Text] [Related]
9. Molecular subtype classification of breast cancer using established radiomic signature models based on Liu J; Bian H; Zhang Y; Gao Y; Yin G; Wang Z; Li X; Ma W; Xu W Front Biosci (Landmark Ed); 2021 Aug; 26(9):475-484. PubMed ID: 34590460 [No Abstract] [Full Text] [Related]
10. A Novel Approach Using FDG-PET/CT-Based Radiomics to Assess Tumor Immune Phenotypes in Patients With Non-Small Cell Lung Cancer. Zhou J; Zou S; Kuang D; Yan J; Zhao J; Zhu X Front Oncol; 2021; 11():769272. PubMed ID: 34868999 [TBL] [Abstract][Full Text] [Related]
11. Intra-tumoural heterogeneity characterization through texture and colour analysis for differentiation of non-small cell lung carcinoma subtypes. Ma Y; Feng W; Wu Z; Liu M; Zhang F; Liang Z; Cui C; Huang J; Li X; Guo X Phys Med Biol; 2018 Aug; 63(16):165018. PubMed ID: 30051884 [TBL] [Abstract][Full Text] [Related]
12. Machine learning for differentiating lung squamous cell cancer from adenocarcinoma using Clinical-Metabolic characteristics and 18F-FDG PET/CT radiomics. Zhang Y; Liu H; Chang C; Yin Y; Wang R PLoS One; 2024; 19(4):e0300170. PubMed ID: 38568892 [TBL] [Abstract][Full Text] [Related]
13. Development and validation of a radiomic nomogram based on pretherapy dual-energy CT for distinguishing adenocarcinoma from squamous cell carcinoma of the lung. Chen Z; Yi L; Peng Z; Zhou J; Zhang Z; Tao Y; Lin Z; He A; Jin M; Zuo M Front Oncol; 2022; 12():949111. PubMed ID: 36505773 [TBL] [Abstract][Full Text] [Related]
14. Value of pre-therapy Zhang J; Zhao X; Zhao Y; Zhang J; Zhang Z; Wang J; Wang Y; Dai M; Han J Eur J Nucl Med Mol Imaging; 2020 May; 47(5):1137-1146. PubMed ID: 31728587 [TBL] [Abstract][Full Text] [Related]
15. Value of Hu Y; Zhao X; Zhang J; Han J; Dai M Eur J Nucl Med Mol Imaging; 2021 Jan; 48(1):231-240. PubMed ID: 32588088 [TBL] [Abstract][Full Text] [Related]
16. The Machine Learning Model for Distinguishing Pathological Subtypes of Non-Small Cell Lung Cancer. Zhao H; Su Y; Wang M; Lyu Z; Xu P; Jiao Y; Zhang L; Han W; Tian L; Fu P Front Oncol; 2022; 12():875761. PubMed ID: 35692759 [TBL] [Abstract][Full Text] [Related]
17. Development and Validation of a Ouyang ML; Wang YR; Deng QS; Zhu YF; Zhao ZH; Wang L; Wang LX; Tang K Front Oncol; 2021; 11():710909. PubMed ID: 34568038 [TBL] [Abstract][Full Text] [Related]
18. Value of contrast-enhanced magnetic resonance imaging-T2WI-based radiomic features in distinguishing lung adenocarcinoma from lung squamous cell carcinoma with solid components >8 mm. Yang M; Shi L; Huang T; Li G; Shao H; Shen Y; Zhu J; Ni B J Thorac Dis; 2023 Feb; 15(2):635-648. PubMed ID: 36910079 [TBL] [Abstract][Full Text] [Related]
19. Value of [ Li K; Sun H; Lu Z; Xin J; Zhang L; Guo Y; Guo Q Eur J Radiol; 2018 Sep; 106():160-166. PubMed ID: 30150039 [TBL] [Abstract][Full Text] [Related]
20. Use of radiomics based on Zhou Y; Ma XL; Zhang T; Wang J; Zhang T; Tian R Eur J Nucl Med Mol Imaging; 2021 Aug; 48(9):2904-2913. PubMed ID: 33547553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]