BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35118567)

  • 1. Model-Based Assessment of the Contribution of Monocytes and Macrophages to the Pharmacokinetics of Monoclonal Antibodies.
    Malik PRV; Hamadeh A; Edginton AN
    Pharm Res; 2022 Feb; 39(2):239-250. PubMed ID: 35118567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human.
    Shah DK; Betts AM
    J Pharmacokinet Pharmacodyn; 2012 Feb; 39(1):67-86. PubMed ID: 22143261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice.
    Garg A; Balthasar JP
    J Pharmacokinet Pharmacodyn; 2007 Oct; 34(5):687-709. PubMed ID: 17636457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Physiologically Based Pharmacokinetic Modeling to Predict the Effects of FcRn Inhibitors in Mice, Rats, and Monkeys.
    Li T; Balthasar JP
    J Pharm Sci; 2019 Jan; 108(1):701-713. PubMed ID: 30423340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neonatal Fc receptor expression in macrophages is indispensable for IgG homeostasis.
    Challa DK; Wang X; Montoyo HP; Velmurugan R; Ober RJ; Ward ES
    MAbs; 2019 Jul; 11(5):848-860. PubMed ID: 30964743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiologically based pharmacokinetic (PBPK) model that describes enhanced FcRn-dependent distribution of monoclonal antibodies (mAbs) by pI-engineering in mice.
    Naoi S; Yamane M; Nemoto T; Kato M; Saito R; Tachibana T
    Drug Metab Pharmacokinet; 2023 Dec; 53():100506. PubMed ID: 38029470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a catenary PBPK model for predicting the in vivo disposition of mAbs engineered for high-affinity binding to FcRn.
    Chen Y; Balthasar JP
    AAPS J; 2012 Dec; 14(4):850-9. PubMed ID: 22956476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hematopoietic cells as site of first-pass catabolism after subcutaneous dosing and contributors to systemic clearance of a monoclonal antibody in mice.
    Richter WF; Christianson GJ; Frances N; Grimm HP; Proetzel G; Roopenian DC
    MAbs; 2018 Jul; 10(5):803-813. PubMed ID: 29621428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the role of FcγR and FcRn in mAb distribution to the brain.
    Abuqayyas L; Balthasar JP
    Mol Pharm; 2013 May; 10(5):1505-13. PubMed ID: 22838637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined glyco- and protein-Fc engineering simultaneously enhance cytotoxicity and half-life of a therapeutic antibody.
    Monnet C; Jorieux S; Souyris N; Zaki O; Jacquet A; Fournier N; Crozet F; de Romeuf C; Bouayadi K; Urbain R; Behrens CK; Mondon P; Fontayne A
    MAbs; 2014; 6(2):422-36. PubMed ID: 24492301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MHC class I-related neonatal Fc receptor for IgG is functionally expressed in monocytes, intestinal macrophages, and dendritic cells.
    Zhu X; Meng G; Dickinson BL; Li X; Mizoguchi E; Miao L; Wang Y; Robert C; Wu B; Smith PD; Lencer WI; Blumberg RS
    J Immunol; 2001 Mar; 166(5):3266-76. PubMed ID: 11207281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of monoclonal antibody pharmacokinetics in humans using a minimal physiologically based model.
    Li L; Gardner I; Dostalek M; Jamei M
    AAPS J; 2014 Sep; 16(5):1097-109. PubMed ID: 25004823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are endosomal trafficking parameters better targets for improving mAb pharmacokinetics than FcRn binding affinity?
    Gurbaxani B; Dostalek M; Gardner I
    Mol Immunol; 2013 Dec; 56(4):660-74. PubMed ID: 23917469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FcRn augments induction of tissue factor activity by IgG-containing immune complexes.
    Cines DB; Zaitsev S; Rauova L; Rux AH; Stepanova V; Krishnaswamy S; Sarkar A; Kowalska MA; Zhao G; Mast AE; Blumberg LJ; McCrae KR; Poncz M; Hubbard JJ; Pyzik M; Blumberg RS
    Blood; 2020 Jun; 135(23):2085-2093. PubMed ID: 32187355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of the neonatal Fc receptor on human IgG biodistribution in mice.
    Chen N; Wang W; Fauty S; Fang Y; Hamuro L; Hussain A; Prueksaritanont T
    MAbs; 2014; 6(2):502-8. PubMed ID: 24492305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of FcRn binding to intestinal uptake of IgG in suckling rat pups and human FcRn-transgenic mice.
    Kliwinski C; Cooper PR; Perkinson R; Mabus JR; Tam SH; Wilkinson TM; Giles-Komar J; Scallon B; Powers GD; Hornby PJ
    Am J Physiol Gastrointest Liver Physiol; 2013 Feb; 304(3):G262-70. PubMed ID: 23220220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human FcRn Transgenic Mice for Pharmacokinetic Evaluation of Therapeutic Antibodies.
    Roopenian DC; Christianson GJ; Proetzel G; Sproule TJ
    Methods Mol Biol; 2016; 1438():103-14. PubMed ID: 27150086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in complementarity-determining regions significantly alter IgG binding to the neonatal Fc receptor (FcRn) and pharmacokinetics.
    Piche-Nicholas NM; Avery LB; King AC; Kavosi M; Wang M; O'Hara DM; Tchistiakova L; Katragadda M
    MAbs; 2018 Jan; 10(1):81-94. PubMed ID: 28991504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Physiologically-Based Pharmacokinetic Model for the Prediction of Monoclonal Antibody Pharmacokinetics From In Vitro Data.
    Jones HM; Zhang Z; Jasper P; Luo H; Avery LB; King LE; Neubert H; Barton HA; Betts AM; Webster R
    CPT Pharmacometrics Syst Pharmacol; 2019 Oct; 8(10):738-747. PubMed ID: 31464379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacokinetic models for FcRn-mediated IgG disposition.
    Xiao JJ
    J Biomed Biotechnol; 2012; 2012():282989. PubMed ID: 22665983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.