These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35119163)

  • 1. Phosphorogenic Iridium(III) bis-Tetrazine Complexes for Bioorthogonal Peptide Stapling, Bioimaging, Photocytotoxic Applications, and the Construction of Nanosized Hydrogels.
    Yip AM; Lai CK; Yiu KS; Lo KK
    Angew Chem Int Ed Engl; 2022 Apr; 61(16):e202116078. PubMed ID: 35119163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting the Potential of Iridium(III)
    Mak EC; Chen Z; Lee LC; Leung PK; Yip AM; Shum J; Yiu SM; Yam VW; Lo KK
    J Am Chem Soc; 2024 Sep; 146(37):25589-25599. PubMed ID: 39248725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Installing an additional emission quenching pathway in the design of iridium(III)-based phosphorogenic biomaterials for bioorthogonal labelling and imaging.
    Li SP; Yip AM; Liu HW; Lo KK
    Biomaterials; 2016 Oct; 103():305-313. PubMed ID: 27429251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conferring Phosphorogenic Properties on Iridium(III)-Based Bioorthogonal Probes through Modification with a Nitrone Unit.
    Lee LC; Lau JC; Liu HW; Lo KK
    Angew Chem Int Ed Engl; 2016 Jan; 55(3):1046-9. PubMed ID: 26617258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Luminescent Rhenium(I) and Iridium(III) Polypyridine Complexes as Biological Probes, Imaging Reagents, and Photocytotoxic Agents.
    Lo KK
    Acc Chem Res; 2015 Dec; 48(12):2985-95. PubMed ID: 26161527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Annealing 1,2,4-triazine to iridium(III) complexes induces luminogenic behaviour in bioorthogonal reactions with strained alkynes.
    Cooke L; Gristwood K; Adamson K; Sims MT; Deary ME; Bruce D; Antoniou AN; Walden HR; Knight JC; Antoine-Brunet T; Joly M; Goyard D; Lanoë PH; Berthet N; Kozhevnikov VN
    Dalton Trans; 2024 Sep; 53(37):15501-15508. PubMed ID: 39246105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monochromophoric Design Strategy for Tetrazine-Based Colorful Bioorthogonal Probes with a Single Fluorescent Core Skeleton.
    Lee Y; Cho W; Sung J; Kim E; Park SB
    J Am Chem Soc; 2018 Jan; 140(3):974-983. PubMed ID: 29240995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Tetrazine-Caged Carbon-Dipyrromethene as a Bioorthogonally Activatable Fluorescent Probe.
    Tam LKB; Lo PC; Cheung PCK; Ng DKP
    Chem Asian J; 2023 Sep; 18(17):e202300562. PubMed ID: 37489571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Manipulation of Ruthenium(II) Polypyridine Nitrone Complexes to Generate Phosphorogenic Bioorthogonal Reagents for Selective Cellular Labeling.
    Tang TS; Liu HW; Lo KK
    Chemistry; 2016 Jul; 22(28):9649-59. PubMed ID: 27273833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Factor Fluorogenicity of Tetrazine-Modified Cyanine-Styryl Dyes for Bioorthogonal Labelling of DNA.
    Geng P; List E; Rönicke F; Wagenknecht HA
    Chemistry; 2023 Feb; 29(8):e202203156. PubMed ID: 36367152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of luminescent biotinylation reagents derived from cyclometalated iridium(III) and rhodium(III) bis(pyridylbenzaldehyde) complexes.
    Leung SK; Kwok KY; Zhang KY; Lo KK
    Inorg Chem; 2010 Jun; 49(11):4984-95. PubMed ID: 20465281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverse Electron-Demand Diels-Alder Bioorthogonal Reactions.
    Wu H; Devaraj NK
    Top Curr Chem (Cham); 2016 Feb; 374(1):3. PubMed ID: 27572986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Kinetic and Fluorogenic Enhancement Strategy for Labeling of Nucleic Acids.
    Loehr MO; Luedtke NW
    Angew Chem Int Ed Engl; 2022 May; 61(22):e202112931. PubMed ID: 35139255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications.
    Handula M; Chen KT; Seimbille Y
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overview of Syntheses and Molecular-Design Strategies for Tetrazine-Based Fluorogenic Probes.
    Choi SK; Kim J; Kim E
    Molecules; 2021 Mar; 26(7):. PubMed ID: 33810254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proximity-enhanced protein crosslinking through an alkene-tetrazine reaction.
    Ma B; Niu W; Guo J
    Bioorg Chem; 2023 Mar; 132():106359. PubMed ID: 36642019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Targeting Nuclear Molecular Imaging Driven by Tetrazine Bioorthogonal Chemistry.
    Dong P; Wang X; Zheng J; Zhang X; Li Y; Wu H; Li L
    Curr Med Chem; 2020; 27(23):3924-3943. PubMed ID: 31267851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioorthogonal micellar nanoreactors for prodrug cancer therapy using an inverse-electron-demand Diels-Alder reaction.
    Suehiro F; Fujii S; Nishimura T
    Chem Commun (Camb); 2022 Jun; 58(50):7026-7029. PubMed ID: 35642953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Design of Bioorthogonal Probes and Imaging Reagents Derived from Photofunctional Transition Metal Complexes.
    Lo KK
    Acc Chem Res; 2020 Jan; 53(1):32-44. PubMed ID: 31916746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luminescent Neutral Cyclometalated Iridium(III) Complexes Featuring a Cubic Polyhedral Oligomeric Silsesquioxane for Lipid Droplet Imaging and Photocytotoxic Applications.
    Zhu JH; Yiu SM; Tang BZ; Lo KK
    Inorg Chem; 2021 Aug; 60(15):11672-11683. PubMed ID: 34269564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.