These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 35119207)
1. TransPi-a comprehensive TRanscriptome ANalysiS PIpeline for de novo transcriptome assembly. Rivera-Vicéns RE; Garcia-Escudero CA; Conci N; Eitel M; Wörheide G Mol Ecol Resour; 2022 Jul; 22(5):2070-2086. PubMed ID: 35119207 [TBL] [Abstract][Full Text] [Related]
2. RNA-Seq in Nonmodel Organisms. Chalifa-Caspi V Methods Mol Biol; 2021; 2243():143-167. PubMed ID: 33606257 [TBL] [Abstract][Full Text] [Related]
3. De novo transcriptome assembly: A comprehensive cross-species comparison of short-read RNA-Seq assemblers. Hölzer M; Marz M Gigascience; 2019 May; 8(5):. PubMed ID: 31077315 [TBL] [Abstract][Full Text] [Related]
4. Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms. Haznedaroglu BZ; Reeves D; Rismani-Yazdi H; Peccia J BMC Bioinformatics; 2012 Jul; 13():170. PubMed ID: 22808927 [TBL] [Abstract][Full Text] [Related]
5. Comparison of De Novo Transcriptome Assemblers and k-mer Strategies Using the Killifish, Fundulus heteroclitus. Rana SB; Zadlock FJ; Zhang Z; Murphy WR; Bentivegna CS PLoS One; 2016; 11(4):e0153104. PubMed ID: 27054874 [TBL] [Abstract][Full Text] [Related]
6. Combining independent de novo assemblies optimizes the coding transcriptome for nonconventional model eukaryotic organisms. Cerveau N; Jackson DJ BMC Bioinformatics; 2016 Dec; 17(1):525. PubMed ID: 27938328 [TBL] [Abstract][Full Text] [Related]
7. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. Zhao QY; Wang Y; Kong YM; Luo D; Li X; Hao P BMC Bioinformatics; 2011 Dec; 12 Suppl 14(Suppl 14):S2. PubMed ID: 22373417 [TBL] [Abstract][Full Text] [Related]
8. Comparative performance of transcriptome assembly methods for non-model organisms. Huang X; Chen XG; Armbruster PA BMC Genomics; 2016 Jul; 17():523. PubMed ID: 27464550 [TBL] [Abstract][Full Text] [Related]
9. Comparison of Gene Expression Profiles in Nonmodel Eukaryotic Organisms with RNA-Seq. Cheng H; Wang Y; Sun MA Methods Mol Biol; 2018; 1751():3-16. PubMed ID: 29508286 [TBL] [Abstract][Full Text] [Related]
10. Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis. Wang S; Gribskov M Bioinformatics; 2017 Feb; 33(3):327-333. PubMed ID: 28172640 [TBL] [Abstract][Full Text] [Related]
11. Combining transcriptome assemblies from multiple de novo assemblers in the allo-tetraploid plant Nicotiana benthamiana. Nakasugi K; Crowhurst R; Bally J; Waterhouse P PLoS One; 2014; 9(3):e91776. PubMed ID: 24614631 [TBL] [Abstract][Full Text] [Related]
12. Assembly-free rapid differential gene expression analysis in non-model organisms using DNA-protein alignment. Shrestha AMS; B Guiao JE; R Santiago KC BMC Genomics; 2022 Feb; 23(1):97. PubMed ID: 35120462 [TBL] [Abstract][Full Text] [Related]
13. ClusTrast: a short read de novo transcript isoform assembler guided by clustered contigs. Westrin KJ; Kretzschmar WW; Emanuelsson O BMC Bioinformatics; 2024 Feb; 25(1):54. PubMed ID: 38302873 [TBL] [Abstract][Full Text] [Related]
14. Inferring bona fide transfrags in RNA-Seq derived-transcriptome assemblies of non-model organisms. Mbandi SK; Hesse U; van Heusden P; Christoffels A BMC Bioinformatics; 2015 Feb; 16(1):58. PubMed ID: 25880035 [TBL] [Abstract][Full Text] [Related]
15. Challenges and advances for transcriptome assembly in non-model species. Ungaro A; Pech N; Martin JF; McCairns RJS; Mévy JP; Chappaz R; Gilles A PLoS One; 2017; 12(9):e0185020. PubMed ID: 28931057 [TBL] [Abstract][Full Text] [Related]
16. Improved annotation with de novo transcriptome assembly in four social amoeba species. Singh R; Lawal HM; Schilde C; Glöckner G; Barton GJ; Schaap P; Cole C BMC Genomics; 2017 Jan; 18(1):120. PubMed ID: 28143409 [TBL] [Abstract][Full Text] [Related]
17. transXpress: a Snakemake pipeline for streamlined de novo transcriptome assembly and annotation. Fallon TR; Čalounová T; Mokrejš M; Weng JK; Pluskal T BMC Bioinformatics; 2023 Apr; 24(1):133. PubMed ID: 37016291 [TBL] [Abstract][Full Text] [Related]
18. Comparing de novo transcriptome assembly tools in di- and autotetraploid non-model plant species. Madritsch S; Burg A; Sehr EM BMC Bioinformatics; 2021 Mar; 22(1):146. PubMed ID: 33752598 [TBL] [Abstract][Full Text] [Related]
19. A consensus-based ensemble approach to improve transcriptome assembly. Voshall A; Behera S; Li X; Yu XH; Kapil K; Deogun JS; Shanklin J; Cahoon EB; Moriyama EN BMC Bioinformatics; 2021 Oct; 22(1):513. PubMed ID: 34674629 [TBL] [Abstract][Full Text] [Related]
20. De novo transcriptome assembly for a non-model species, the blood-sucking bug Triatoma brasiliensis, a vector of Chagas disease. Marchant A; Mougel F; Almeida C; Jacquin-Joly E; Costa J; Harry M Genetica; 2015 Apr; 143(2):225-39. PubMed ID: 25233990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]