BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35119207)

  • 1. TransPi-a comprehensive TRanscriptome ANalysiS PIpeline for de novo transcriptome assembly.
    Rivera-Vicéns RE; Garcia-Escudero CA; Conci N; Eitel M; Wörheide G
    Mol Ecol Resour; 2022 Jul; 22(5):2070-2086. PubMed ID: 35119207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-Seq in Nonmodel Organisms.
    Chalifa-Caspi V
    Methods Mol Biol; 2021; 2243():143-167. PubMed ID: 33606257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo transcriptome assembly: A comprehensive cross-species comparison of short-read RNA-Seq assemblers.
    Hölzer M; Marz M
    Gigascience; 2019 May; 8(5):. PubMed ID: 31077315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms.
    Haznedaroglu BZ; Reeves D; Rismani-Yazdi H; Peccia J
    BMC Bioinformatics; 2012 Jul; 13():170. PubMed ID: 22808927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of De Novo Transcriptome Assemblers and k-mer Strategies Using the Killifish, Fundulus heteroclitus.
    Rana SB; Zadlock FJ; Zhang Z; Murphy WR; Bentivegna CS
    PLoS One; 2016; 11(4):e0153104. PubMed ID: 27054874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining independent de novo assemblies optimizes the coding transcriptome for nonconventional model eukaryotic organisms.
    Cerveau N; Jackson DJ
    BMC Bioinformatics; 2016 Dec; 17(1):525. PubMed ID: 27938328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study.
    Zhao QY; Wang Y; Kong YM; Luo D; Li X; Hao P
    BMC Bioinformatics; 2011 Dec; 12 Suppl 14(Suppl 14):S2. PubMed ID: 22373417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly-free rapid differential gene expression analysis in non-model organisms using DNA-protein alignment.
    Shrestha AMS; B Guiao JE; R Santiago KC
    BMC Genomics; 2022 Feb; 23(1):97. PubMed ID: 35120462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative performance of transcriptome assembly methods for non-model organisms.
    Huang X; Chen XG; Armbruster PA
    BMC Genomics; 2016 Jul; 17():523. PubMed ID: 27464550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Gene Expression Profiles in Nonmodel Eukaryotic Organisms with RNA-Seq.
    Cheng H; Wang Y; Sun MA
    Methods Mol Biol; 2018; 1751():3-16. PubMed ID: 29508286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis.
    Wang S; Gribskov M
    Bioinformatics; 2017 Feb; 33(3):327-333. PubMed ID: 28172640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining transcriptome assemblies from multiple de novo assemblers in the allo-tetraploid plant Nicotiana benthamiana.
    Nakasugi K; Crowhurst R; Bally J; Waterhouse P
    PLoS One; 2014; 9(3):e91776. PubMed ID: 24614631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ClusTrast: a short read de novo transcript isoform assembler guided by clustered contigs.
    Westrin KJ; Kretzschmar WW; Emanuelsson O
    BMC Bioinformatics; 2024 Feb; 25(1):54. PubMed ID: 38302873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring bona fide transfrags in RNA-Seq derived-transcriptome assemblies of non-model organisms.
    Mbandi SK; Hesse U; van Heusden P; Christoffels A
    BMC Bioinformatics; 2015 Feb; 16(1):58. PubMed ID: 25880035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges and advances for transcriptome assembly in non-model species.
    Ungaro A; Pech N; Martin JF; McCairns RJS; Mévy JP; Chappaz R; Gilles A
    PLoS One; 2017; 12(9):e0185020. PubMed ID: 28931057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved annotation with de novo transcriptome assembly in four social amoeba species.
    Singh R; Lawal HM; Schilde C; Glöckner G; Barton GJ; Schaap P; Cole C
    BMC Genomics; 2017 Jan; 18(1):120. PubMed ID: 28143409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. transXpress: a Snakemake pipeline for streamlined de novo transcriptome assembly and annotation.
    Fallon TR; Čalounová T; Mokrejš M; Weng JK; Pluskal T
    BMC Bioinformatics; 2023 Apr; 24(1):133. PubMed ID: 37016291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing de novo transcriptome assembly tools in di- and autotetraploid non-model plant species.
    Madritsch S; Burg A; Sehr EM
    BMC Bioinformatics; 2021 Mar; 22(1):146. PubMed ID: 33752598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A consensus-based ensemble approach to improve transcriptome assembly.
    Voshall A; Behera S; Li X; Yu XH; Kapil K; Deogun JS; Shanklin J; Cahoon EB; Moriyama EN
    BMC Bioinformatics; 2021 Oct; 22(1):513. PubMed ID: 34674629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo transcriptome assembly for a non-model species, the blood-sucking bug Triatoma brasiliensis, a vector of Chagas disease.
    Marchant A; Mougel F; Almeida C; Jacquin-Joly E; Costa J; Harry M
    Genetica; 2015 Apr; 143(2):225-39. PubMed ID: 25233990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.