These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 35119442)
1. Molecular insight into the role of zeolite lattice constraints on methane activation over the Cu-O-Cu active site. Mahyuddin MH; Saputro AG; Sukanli RPP; Fathurrahman F; Rizkiana J; Nuruddin A; Dipojono HK Phys Chem Chem Phys; 2022 Feb; 24(7):4196-4203. PubMed ID: 35119442 [TBL] [Abstract][Full Text] [Related]
2. Rationally designing mixed Cu-(μ-O)-M (M = Cu, Ag, Zn, Au) centers over zeolite materials with high catalytic activity towards methane activation. Wang G; Huang L; Chen W; Zhou J; Zheng A Phys Chem Chem Phys; 2018 Nov; 20(41):26522-26531. PubMed ID: 30306980 [TBL] [Abstract][Full Text] [Related]
3. Room-Temperature Activation of the C-H Bond in Methane over Terminal Zn Oda A; Ohkubo T; Yumura T; Kobayashi H; Kuroda Y Inorg Chem; 2019 Jan; 58(1):327-338. PubMed ID: 30495931 [TBL] [Abstract][Full Text] [Related]
4. Dioxygen Activation on Cu-MOR Zeolite: Theoretical Insights into the Formation of Cu Mahyuddin MH; Tanaka T; Staykov A; Shiota Y; Yoshizawa K Inorg Chem; 2018 Aug; 57(16):10146-10152. PubMed ID: 30091906 [TBL] [Abstract][Full Text] [Related]
5. Spectroscopic Definition of a Highly Reactive Site in Cu-CHA for Selective Methane Oxidation: Tuning a Mono-μ-Oxo Dicopper(II) Active Site for Reactivity. Rhoda HM; Plessers D; Heyer AJ; Bols ML; Schoonheydt RA; Sels BF; Solomon EI J Am Chem Soc; 2021 May; 143(19):7531-7540. PubMed ID: 33970624 [TBL] [Abstract][Full Text] [Related]
6. DFT Analysis of Methane C-H Activation and Over-Oxidation by [Cu Panthi D; Adeyiga O; Odoh SO Chemphyschem; 2021 Dec; 22(24):2517-2525. PubMed ID: 34519406 [TBL] [Abstract][Full Text] [Related]
7. Catalytic cycle of the partial oxidation of methane to methanol over Cu-ZSM-5 revealed using DFT calculations. Yu X; Zhong L; Li S Phys Chem Chem Phys; 2021 Mar; 23(8):4963-4974. PubMed ID: 33621299 [TBL] [Abstract][Full Text] [Related]
8. Methane Activation on H-ZSM-5 Zeolite with Low Copper Loading. The Nature of Active Sites and Intermediates Identified with the Combination of Spectroscopic Methods. Gabrienko AA; Yashnik SA; Kolganov AA; Sheveleva AM; Arzumanov SS; Fedin MV; Tuna F; Stepanov AG Inorg Chem; 2020 Feb; 59(3):2037-2050. PubMed ID: 31971794 [TBL] [Abstract][Full Text] [Related]
9. Effects of single and double active sites of Cu oxide clusters over the MFI zeolite for direct conversion of methane to methanol: DFT calculations. Nunthakitgoson W; Thivasasith A; Maihom T; Wattanakit C Phys Chem Chem Phys; 2021 Jan; 23(3):2500-2510. PubMed ID: 33465219 [TBL] [Abstract][Full Text] [Related]
10. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts. Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K Acc Chem Res; 2018 Oct; 51(10):2382-2390. PubMed ID: 30207444 [TBL] [Abstract][Full Text] [Related]
11. Partial Oxidation of Methane to Methanol on the M-O-Ag/Graphene (M = Ag, Cu) Composite Catalyst: A DFT Study. Yan Z; Xu H; Huang L; Fu H; Li S Langmuir; 2023 Feb; 39(6):2422-2434. PubMed ID: 36734609 [TBL] [Abstract][Full Text] [Related]
12. Consequences of metal-oxide interconversion for C-H bond activation during CH4 reactions on Pd catalysts. Chin YH; Buda C; Neurock M; Iglesia E J Am Chem Soc; 2013 Oct; 135(41):15425-42. PubMed ID: 24083571 [TBL] [Abstract][Full Text] [Related]
13. Second-Sphere Effects on Methane Hydroxylation in Cu-Zeolites. Snyder BER; Vanelderen P; Schoonheydt RA; Sels BF; Solomon EI J Am Chem Soc; 2018 Jul; 140(29):9236-9243. PubMed ID: 29954176 [TBL] [Abstract][Full Text] [Related]
14. Experimental and theoretical investigation of oxidative methane activation on Pd-Pt catalysts. Qi W; Huang Z; Chen Z; Fu L; Zhang Z RSC Adv; 2019 Apr; 9(20):11385-11395. PubMed ID: 35520245 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopic definition of the copper active sites in mordenite: selective methane oxidation. Vanelderen P; Snyder BE; Tsai ML; Hadt RG; Vancauwenbergh J; Coussens O; Schoonheydt RA; Sels BF; Solomon EI J Am Chem Soc; 2015 May; 137(19):6383-92. PubMed ID: 25914019 [TBL] [Abstract][Full Text] [Related]
16. Effects of ZSM-5 zeolite confinement on reaction intermediates during dioxygen activation by enclosed dicopper cations. Yumura T; Takeuchi M; Kobayashi H; Kuroda Y Inorg Chem; 2009 Jan; 48(2):508-17. PubMed ID: 19093853 [TBL] [Abstract][Full Text] [Related]
17. Electronic Structure of the [Cu Vogiatzis KD; Li G; Hensen EJM; Gagliardi L; Pidko EA J Phys Chem C Nanomater Interfaces; 2017 Oct; 121(40):22295-22302. PubMed ID: 29051794 [TBL] [Abstract][Full Text] [Related]
18. Methane C-H bond heterolysis versus homolysis on Cu-MFI and Au-MFI. Sajid M; Khan B; Shahzad N J Mol Graph Model; 2023 Jun; 121():108446. PubMed ID: 36898226 [TBL] [Abstract][Full Text] [Related]
19. Role of tyrosine residue in methane activation at the dicopper site of particulate methane monooxygenase: a density functional theory study. Shiota Y; Juhász G; Yoshizawa K Inorg Chem; 2013 Jul; 52(14):7907-17. PubMed ID: 23808646 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the reactivity of bis(mu-oxo)Cu(II)Cu(III) and Cu(III)Cu(III) species to methane. Shiota Y; Yoshizawa K Inorg Chem; 2009 Feb; 48(3):838-45. PubMed ID: 19113938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]