These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 35119833)
21. P2-Na Konarov A; Kim HJ; Voronina N; Bakenov Z; Myung ST ACS Appl Mater Interfaces; 2019 Aug; 11(32):28928-28933. PubMed ID: 31318189 [TBL] [Abstract][Full Text] [Related]
22. O3-Type Layered Ni-Rich Oxide: A High-Capacity and Superior-Rate Cathode for Sodium-Ion Batteries. Yang J; Tang M; Liu H; Chen X; Xu Z; Huang J; Su Q; Xia Y Small; 2019 Dec; 15(52):e1905311. PubMed ID: 31663266 [TBL] [Abstract][Full Text] [Related]
23. Gradient and De-Clustered Anionic Redox Enabled Undetectable O Li N; Zhao E; Zhang Z; Yin W; He L; Wang B; Wang F; Xiao X; Zhao J Adv Mater; 2024 Nov; 36(48):e2408984. PubMed ID: 39400472 [TBL] [Abstract][Full Text] [Related]
24. MoO Liu X; Gong J; Wei X; Ni L; Chen H; Zheng Q; Xu C; Lin D J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1897-1905. PubMed ID: 34689046 [TBL] [Abstract][Full Text] [Related]
25. High-Capacity Te Anode Confined in Microporous Carbon for Long-Life Na-Ion Batteries. Zhang J; Yin YX; Guo YG ACS Appl Mater Interfaces; 2015 Dec; 7(50):27838-44. PubMed ID: 26618232 [TBL] [Abstract][Full Text] [Related]
26. Enhancing the Cycling and Rate Performance of NaNi Gong C; Han G; Lin J; Zhang Q; Wang B; Yang M; Huang Z; Zhang C; Wei W ACS Appl Mater Interfaces; 2024 Sep; 16(38):50961-50971. PubMed ID: 39271243 [TBL] [Abstract][Full Text] [Related]
27. Spinel-Layered Intergrowth Composite Cathodes for Sodium-Ion Batteries. Tang M; Yang J; Liu H; Chen X; Kong L; Xu Z; Huang J; Xia Y ACS Appl Mater Interfaces; 2020 Oct; 12(41):45997-46004. PubMed ID: 32924420 [TBL] [Abstract][Full Text] [Related]
28. High-Performance P2-Na Wang Y; Zhao F; Qian Y; Ji H ACS Appl Mater Interfaces; 2018 Dec; 10(49):42380-42386. PubMed ID: 30461267 [TBL] [Abstract][Full Text] [Related]
29. Lithium-Rich Layered Oxide Li1.18 Ni0.15 Co0.15 Mn0.52 O2 as the Cathode Material for Hybrid Sodium-Ion Batteries. Wei Z; Gao Y; Wang L; Zhang C; Bian X; Fu Q; Wang C; Wei Y; Du F; Chen G Chemistry; 2016 Aug; 22(33):11610-6. PubMed ID: 27320123 [TBL] [Abstract][Full Text] [Related]
30. Tunable Electrochemical Activity of P2-Na Kang W; Ma P; Liu Z; Wang Y; Wang X; Chen H; He T; Luo W; Sun D ACS Appl Mater Interfaces; 2021 Apr; 13(13):15333-15343. PubMed ID: 33769033 [TBL] [Abstract][Full Text] [Related]
31. Enhancing Structure Stability by Mg/Cr Co-Doped for High-Voltage Sodium-Ion Batteries. Xu X; Hu S; Pan Q; Huang Y; Zhang J; Chen Y; Wang H; Zheng F; Li Q Small; 2024 Mar; 20(12):e2307377. PubMed ID: 37940628 [TBL] [Abstract][Full Text] [Related]
32. P2-Na2/3Ni1/3Mn5/9Al1/9O2 Microparticles as Superior Cathode Material for Sodium-Ion Batteries: Enhanced Properties and Mechanisam via Graphene Connection. Zhang XH; Pang WL; Wan F; Guo JZ; Lü HY; Li JY; Xing YM; Zhang JP; Wu XL ACS Appl Mater Interfaces; 2016 Aug; 8(32):20650-9. PubMed ID: 27454458 [TBL] [Abstract][Full Text] [Related]
33. Dependence of structure and temperature for lithium-rich layered-spinel microspheres cathode material of lithium ion batteries. Wang D; Yu R; Wang X; Ge L; Yang X Sci Rep; 2015 Feb; 5():8403. PubMed ID: 25672573 [TBL] [Abstract][Full Text] [Related]
34. Tuning Electrochemical Properties of Li-Rich Layered Oxide Cathodes by Adjusting Co/Ni Ratios and Mechanism Investigation Using in situ X-ray Diffraction and Online Continuous Flow Differential Electrochemical Mass Spectrometry. Shen S; Hong Y; Zhu F; Cao Z; Li Y; Ke F; Fan J; Zhou L; Wu L; Dai P; Cai M; Huang L; Zhou Z; Li J; Wu Q; Sun S ACS Appl Mater Interfaces; 2018 Apr; 10(15):12666-12677. PubMed ID: 29569902 [TBL] [Abstract][Full Text] [Related]
35. Preparation and Electrochemical Performance of Na Wang L; Tian H; Yao X; Cai Y; Gao Z; Su Z Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38276843 [TBL] [Abstract][Full Text] [Related]
36. Enhancing the Electrochemical Performance and Structural Stability of Ni-Rich Layered Cathode Materials via Dual-Site Doping. Chu M; Huang Z; Zhang T; Wang R; Shao T; Wang C; Zhu W; He L; Chen J; Zhao W; Xiao Y ACS Appl Mater Interfaces; 2021 May; 13(17):19950-19958. PubMed ID: 33891814 [TBL] [Abstract][Full Text] [Related]
37. Improvement of the Cathode Electrolyte Interphase on P2-Na Alvarado J; Ma C; Wang S; Nguyen K; Kodur M; Meng YS ACS Appl Mater Interfaces; 2017 Aug; 9(31):26518-26530. PubMed ID: 28707882 [TBL] [Abstract][Full Text] [Related]
38. Synthesis and properties of cathode materials xLi2MnO3 x (1-x)LiMn1/3Ni1/3Co1/3O2 for Li-ion batteries. Dong T; Yu X; Zhang L; Yang P J Nanosci Nanotechnol; 2014 Apr; 14(4):3041-5. PubMed ID: 24734731 [TBL] [Abstract][Full Text] [Related]
39. Suppressing the P2 - O2 phase transformation and Na Li F; Tian Y; Sun Y; Hou P; Wei X; Xu X J Colloid Interface Sci; 2022 Apr; 611():752-759. PubMed ID: 34887061 [TBL] [Abstract][Full Text] [Related]
40. Tunnel-Structured K Zhang Q; Wei Y; Yang H; Su D; Ma Y; Li H; Zhai T ACS Appl Mater Interfaces; 2017 Mar; 9(8):7009-7016. PubMed ID: 28157289 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]