These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35119846)

  • 1. Correction to Large-Scale Synthesis of Hybrid Conductive Polymer-Gold Nanoparticles Using "Sacrificial" Weakly Binding Ligands for Printing Electronics.
    Escudero A; González-García L; Strahl R; Kang DJ; Drzic J; Kraus T
    Inorg Chem; 2022 Feb; 61(7):3361. PubMed ID: 35119846
    [No Abstract]   [Full Text] [Related]  

  • 2. Large-Scale Synthesis of Hybrid Conductive Polymer-Gold Nanoparticles Using "Sacrificial" Weakly Binding Ligands for Printing Electronics.
    Escudero A; González-García L; Strahl R; Kang DJ; Drzic J; Kraus T
    Inorg Chem; 2021 Nov; 60(22):17103-17113. PubMed ID: 34735769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Printable Transparent Conductive Films for Flexible Electronics.
    Li D; Lai WY; Zhang YZ; Huang W
    Adv Mater; 2018 Mar; 30(10):. PubMed ID: 29319214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible Conductive Inkjet Printing of Healable and Recyclable Electrodes on Cardboard and Paper.
    Kang DJ; Jüttke Y; González-García L; Escudero A; Haft M; Kraus T
    Small; 2020 Jun; 16(25):e2000928. PubMed ID: 32462772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper Nanoparticles for Printed Electronics: Routes Towards Achieving Oxidation Stability.
    Magdassi S; Grouchko M; Kamyshny A
    Materials (Basel); 2010 Sep; 3(9):4626-4638. PubMed ID: 28883344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blue Laser Projection Printing of Conductive Complex 2D and 3D Metallic Structures from Photosensitive Precursors.
    Wang X; Cui K; Xuan Q; Zhu C; Zhao N; Xu J
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21668-21674. PubMed ID: 31117433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication, characterization and screen printing of conductive ink based on carbon@Ag core-shell nanoparticles.
    Wu W; Yang S; Zhang S; Zhang H; Jiang C
    J Colloid Interface Sci; 2014 Aug; 427():15-9. PubMed ID: 24290229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesized biocompatible and conductive ink for 3D printing of flexible electronics.
    Kazemzadeh Farizhandi AA; Khalajabadi SZ; Krishnadoss V; Noshadi I
    J Mech Behav Biomed Mater; 2020 Oct; 110():103960. PubMed ID: 32957251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing Techniques for Bioresorbable Nanoparticles in Fabricating Flexible Conductive Interconnects.
    Li J; Luo S; Liu J; Xu H; Huang X
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29958406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct 3D Printing of Hybrid Nanofiber-Based Nanocomposites for Highly Conductive and Shape Memory Applications.
    Wei H; Cauchy X; Navas IO; Abderrafai Y; Chizari K; Sundararaj U; Liu Y; Leng J; Therriault D
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24523-24532. PubMed ID: 31187627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gravure printing of graphene for large-area flexible electronics.
    Secor EB; Lim S; Zhang H; Frisbie CD; Francis LF; Hersam MC
    Adv Mater; 2014 Jul; 26(26):4533-8. PubMed ID: 24782064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing Aerosol Jet Printing Process of Platinum Ink for High-Resolution Conductive Microstructures on Ceramic and Polymer Substrates.
    Arsenov PV; Efimov AA; Ivanov VV
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33809782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printing: 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles (Adv. Mater. 19/2016).
    Fantino E; Chiappone A; Roppolo I; Manfredi D; Bongiovanni R; Pirri CF; Calignano F
    Adv Mater; 2016 May; 28(19):3711. PubMed ID: 27167030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallic core-shell nanoparticles for conductive coatings and printing.
    Pajor-Świerzy A; Szczepanowicz K; Kamyshny A; Magdassi S
    Adv Colloid Interface Sci; 2022 Jan; 299():102578. PubMed ID: 34864597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Printable conductive inks used for the fabrication of electronics: an overview.
    Dimitriou E; Michailidis N
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 33735843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printing of Conductive Hydrogel-Elastomer Hybrids for Stretchable Electronics.
    Zhu H; Hu X; Liu B; Chen Z; Qu S
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):59243-59251. PubMed ID: 34870967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature.
    Deng D; Jin Y; Cheng Y; Qi T; Xiao F
    ACS Appl Mater Interfaces; 2013 May; 5(9):3839-46. PubMed ID: 23578010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse-Offset Printing of Polymer Resist Ink for Micrometer-Level Patterning of Metal and Metal-Oxide Layers.
    Sneck A; Ailas H; Gao F; Leppäniemi J
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41782-41790. PubMed ID: 34432413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green Fabrication of Highly Conductive Paper Electrodes via Interface Engineering with Aminocellulose.
    Yang Y; Huang Q; Ge W; Ren J; Heinze T; Wang X
    Macromol Rapid Commun; 2021 Feb; 42(3):e2000499. PubMed ID: 33200482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of carbon nanotubes in inkjet printing of conductive polymer suspensions.
    Denneulin A; Bras J; Blayo A; Khelifi B; Roussel-Dherbey F; Neuman C
    Nanotechnology; 2009 Sep; 20(38):385701. PubMed ID: 19713577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.