These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35119894)

  • 1. Radium Ion Optical Clock.
    Holliman CA; Fan M; Contractor A; Brewer SM; Jayich AM
    Phys Rev Lett; 2022 Jan; 128(3):033202. PubMed ID: 35119894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transportable Optical Lattice Clock with 7×10^{-17} Uncertainty.
    Koller SB; Grotti J; Vogt S; Al-Masoudi A; Dörscher S; Häfner S; Sterr U; Lisdat C
    Phys Rev Lett; 2017 Feb; 118(7):073601. PubMed ID: 28256845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absolute frequency measurement of the 40Ca+ 4s(2)S_(1/2)-3d(2)D_(5/2) clock transition.
    Chwalla M; Benhelm J; Kim K; Kirchmair G; Monz T; Riebe M; Schindler P; Villar AS; Hänsel W; Roos CF; Blatt R; Abgrall M; Santarelli G; Rovera GD; Laurent P
    Phys Rev Lett; 2009 Jan; 102(2):023002. PubMed ID: 19257267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Limits on the Coupling of Ultralight Bosonic Dark Matter to Photons from Optical Atomic Clock Comparisons.
    Filzinger M; Dörscher S; Lange R; Klose J; Steinel M; Benkler E; Peik E; Lisdat C; Huntemann N
    Phys Rev Lett; 2023 Jun; 130(25):253001. PubMed ID: 37418745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous bicolor interrogation in thulium optical clock providing very low systematic frequency shifts.
    Golovizin AA; Tregubov DO; Fedorova ES; Mishin DA; Provorchenko DI; Khabarova KY; Sorokin VN; Kolachevsky NN
    Nat Commun; 2021 Aug; 12(1):5171. PubMed ID: 34453046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ^{27}Al^{+} Quantum-Logic Clock with a Systematic Uncertainty below 10^{-18}.
    Brewer SM; Chen JS; Hankin AM; Clements ER; Chou CW; Wineland DJ; Hume DB; Leibrandt DR
    Phys Rev Lett; 2019 Jul; 123(3):033201. PubMed ID: 31386450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability improvement of
    Hao Y; Hu R; Zhang B; Zeng M; Zhang H; Ma Z; Huang Y; Chen Q; Gao K; Guan H
    Opt Express; 2024 Jan; 32(3):4081-4092. PubMed ID: 38297616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quadruply Ionized Barium as a Candidate for a High-Accuracy Optical Clock.
    Beloy K; Dzuba VA; Brewer SM
    Phys Rev Lett; 2020 Oct; 125(17):173002. PubMed ID: 33156679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a ^{88}Sr^{+} Optical Clock with a Direct Measurement of the Blackbody Radiation Shift and Determination of the Clock Frequency.
    Steinel M; Shao H; Filzinger M; Lipphardt B; Brinkmann M; Didier A; Mehlstäubler TE; Lindvall T; Peik E; Huntemann N
    Phys Rev Lett; 2023 Aug; 131(8):083002. PubMed ID: 37683165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absolute frequency measurement of the 435.5-nm (171)Yb+-clock transition with a Kerr-lens mode-locked femtosecond laser.
    Stenger J; Tamm C; Haverkamp N; Weyers S; Telle HR
    Opt Lett; 2001 Oct; 26(20):1589-91. PubMed ID: 18049672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric quadrupole shift cancellation in single-ion optical frequency standards.
    Dubé P; Madej AA; Bernard JE; Marmet L; Boulanger JS; Cundy S
    Phys Rev Lett; 2005 Jul; 95(3):033001. PubMed ID: 16090738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppressing Inhomogeneous Broadening in a Lutetium Multi-ion Optical Clock.
    Tan TR; Kaewuam R; Arnold KJ; Chanu SR; Zhang Z; Safronova MS; Barrett MD
    Phys Rev Lett; 2019 Aug; 123(6):063201. PubMed ID: 31491162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quadrupole Shift Cancellation Using Dynamic Decoupling.
    Shaniv R; Akerman N; Manovitz T; Shapira Y; Ozeri R
    Phys Rev Lett; 2019 Jun; 122(22):223204. PubMed ID: 31283290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement.
    Matsubara K; Hachisu H; Li Y; Nagano S; Locke C; Nogami A; Kajita M; Hayasaka K; Ido T; Hosokawa M
    Opt Express; 2012 Sep; 20(20):22034-41. PubMed ID: 23037353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clock with 8×10^{-19} Systematic Uncertainty.
    Aeppli A; Kim K; Warfield W; Safronova MS; Ye J
    Phys Rev Lett; 2024 Jul; 133(2):023401. PubMed ID: 39073965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency Comparison of Two (40)Ca(+) Optical Clocks with an Uncertainty at the 10(-17) Level.
    Huang Y; Guan H; Liu P; Bian W; Ma L; Liang K; Li T; Gao K
    Phys Rev Lett; 2016 Jan; 116(1):013001. PubMed ID: 26799015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s.
    Nicholson TL; Martin MJ; Williams JR; Bloom BJ; Bishof M; Swallows MD; Campbell SL; Ye J
    Phys Rev Lett; 2012 Dec; 109(23):230801. PubMed ID: 23368177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock.
    Bize S; Diddams SA; Tanaka U; Tanner CE; Oskay WH; Drullinger RE; Parker TE; Heavner TP; Jefferts SR; Hollberg L; Itano WM; Bergquist JC
    Phys Rev Lett; 2003 Apr; 90(15):150802. PubMed ID: 12732024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential clock comparisons with a multiplexed optical lattice clock.
    Zheng X; Dolde J; Lochab V; Merriman BN; Li H; Kolkowitz S
    Nature; 2022 Feb; 602(7897):425-430. PubMed ID: 35173344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absolute Frequency Measurements of the D Lines in ^{9}Be^{+} Using a Single Trapped Ion.
    Fairbank DM; Banducci AL; Gunkelman RW; VanArsdale JB; Vildibill ML; Brewer SM
    Phys Rev Lett; 2023 Sep; 131(9):093001. PubMed ID: 37721838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.