These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 35120188)
1. How to choose the size of facial areas of interest in interactive eye tracking. Vehlen A; Standard W; Domes G PLoS One; 2022; 17(2):e0263594. PubMed ID: 35120188 [TBL] [Abstract][Full Text] [Related]
2. The area-of-interest problem in eyetracking research: A noise-robust solution for face and sparse stimuli. Hessels RS; Kemner C; van den Boomen C; Hooge IT Behav Res Methods; 2016 Dec; 48(4):1694-1712. PubMed ID: 26563395 [TBL] [Abstract][Full Text] [Related]
3. A Validation of Automatically-Generated Areas-of-Interest in Videos of a Face for Eye-Tracking Research. Hessels RS; Benjamins JS; Cornelissen THW; Hooge ITC Front Psychol; 2018; 9():1367. PubMed ID: 30123168 [TBL] [Abstract][Full Text] [Related]
4. A comparison of visual identification of dental radiographic and nonradiographic images using eye tracking technology. Botelho MG; Ekambaram M; Bhuyan SY; Yeung AWK; Tanaka R; Bornstein MM; Li KY Clin Exp Dent Res; 2020 Feb; 6(1):59-68. PubMed ID: 32067393 [TBL] [Abstract][Full Text] [Related]
5. Attentional bias towards social interactions during viewing of naturalistic scenes. Skripkauskaite S; Mihai I; Koldewyn K Q J Exp Psychol (Hove); 2023 Oct; 76(10):2303-2311. PubMed ID: 36377819 [TBL] [Abstract][Full Text] [Related]
6. Automatic Visual Attention Detection for Mobile Eye Tracking Using Pre-Trained Computer Vision Models and Human Gaze. Barz M; Sonntag D Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34208736 [TBL] [Abstract][Full Text] [Related]
7. Measuring dwell time percentage from head-mounted eye-tracking data--comparison of a frame-by-frame and a fixation-by-fixation analysis. Vansteenkiste P; Cardon G; Philippaerts R; Lenoir M Ergonomics; 2015; 58(5):712-21. PubMed ID: 25529829 [TBL] [Abstract][Full Text] [Related]
8. Maximizing valid eye-tracking data in human and macaque infants by optimizing calibration and adjusting areas of interest. Zeng G; Simpson EA; Paukner A Behav Res Methods; 2024 Feb; 56(2):881-907. PubMed ID: 36890330 [TBL] [Abstract][Full Text] [Related]
9. Social anxiety is related to increased dwell time on socially threatening faces. Lazarov A; Abend R; Bar-Haim Y J Affect Disord; 2016 Mar; 193():282-8. PubMed ID: 26774515 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of an eye tracking setup for studying visual attention in face-to-face conversations. Vehlen A; Spenthof I; Tönsing D; Heinrichs M; Domes G Sci Rep; 2021 Jan; 11(1):2661. PubMed ID: 33514767 [TBL] [Abstract][Full Text] [Related]
11. Provider Visual Attention Correlates With the Quality of Pediatric Resuscitation: An Observational Eye-Tracking Study. Gröpel P; Wagner M; Bibl K; Schwarz H; Eibensteiner F; Berger A; Cardona FS Front Pediatr; 2022; 10():867304. PubMed ID: 35685920 [TBL] [Abstract][Full Text] [Related]
12. Short-time AOIs-based representative scanpath identification and scanpath aggregation. Huang H; Doebler P; Mertins B Behav Res Methods; 2024 Sep; 56(6):6051-6066. PubMed ID: 38195788 [TBL] [Abstract][Full Text] [Related]
13. Normal Gaze Patterns of the Face in Lateral View. Huynh PP; Ishii M; Juarez M; Liao D; Darrach HM; Fung N; Nellis JC; Byrne PJ; Boahene KDO; Papel ID; Kontis TC; Ishii LE Facial Plast Surg Aesthet Med; 2020; 22(2):80-85. PubMed ID: 32130065 [No Abstract] [Full Text] [Related]
14. Eye tracking in surgical education: gaze-based dynamic area of interest can discriminate adverse events and expertise. Fichtel E; Lau N; Park J; Henrickson Parker S; Ponnala S; Fitzgibbons S; Safford SD Surg Endosc; 2019 Jul; 33(7):2249-2256. PubMed ID: 30341656 [TBL] [Abstract][Full Text] [Related]
15. Visualising Spatio-Temporal Gaze Characteristics for Exploratory Data Analysis in Clinical Fetal Ultrasound Scans. Teng C; Sharma H; Drukker L; Papageorghiou AT; Noble AJ Proc Eye Track Res Appl Symp; 2022 Jun; 2022():. PubMed ID: 36649381 [TBL] [Abstract][Full Text] [Related]
16. Measuring vigilance decrement using computer vision assisted eye tracking in dynamic naturalistic environments. Bodala IP; Abbasi NI; Yu Sun ; Bezerianos A; Al-Nashash H; Thakor NV Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2478-2481. PubMed ID: 29060401 [TBL] [Abstract][Full Text] [Related]
17. Children's Visual Perception of Facial Scarring and Cleft Lip Deformity Using Eye Tracking Data. Roby BB; Ebert B; Zavala H; Chinnadurai S; Scott AR Laryngoscope; 2024 Jun; 134(6):2726-2733. PubMed ID: 38214383 [TBL] [Abstract][Full Text] [Related]
18. The impact of slippage on the data quality of head-worn eye trackers. Niehorster DC; Santini T; Hessels RS; Hooge ITC; Kasneci E; Nyström M Behav Res Methods; 2020 Jun; 52(3):1140-1160. PubMed ID: 31898290 [TBL] [Abstract][Full Text] [Related]
19. Correlation Evaluation of Pilots' Situation Awareness in Bridge Simulations via Eye-Tracking Technology. Jiang S; Chen W; Kang Y Comput Intell Neurosci; 2021; 2021():7122437. PubMed ID: 34899896 [TBL] [Abstract][Full Text] [Related]
20. Pupil size dynamics during fixation impact the accuracy and precision of video-based gaze estimation. Choe KW; Blake R; Lee SH Vision Res; 2016 Jan; 118():48-59. PubMed ID: 25578924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]