BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 35120190)

  • 1. Cellular ESCRT components are recruited to regulate the endocytic trafficking and RNA replication compartment assembly during classical swine fever virus infection.
    Liu CC; Liu YY; Zhou JF; Chen X; Chen H; Hu JH; Chen J; Zhang J; Sun RC; Wei JC; Go YY; Morita E; Zhou B
    PLoS Pathog; 2022 Feb; 18(2):e1010294. PubMed ID: 35120190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ESCRT-I Subunit Tsg101 Plays Novel Dual Roles in Entry and Replication of Classical Swine Fever Virus.
    Liu CC; Liu YY; Cheng Y; Zhang YN; Zhang J; Liang XD; Gao Y; Chen H; Baloch AS; Yang Q; Go YY; Zhou B
    J Virol; 2021 Feb; 95(6):. PubMed ID: 33328308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty Acid Synthase Is Involved in Classical Swine Fever Virus Replication by Interaction with NS4B.
    Liu YY; Liang XD; Liu CC; Cheng Y; Chen H; Baloch AS; Zhang J; Go YY; Zhou B
    J Virol; 2021 Aug; 95(17):e0078121. PubMed ID: 34132567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Small GTPase Rab14 Regulates the Trafficking of Ceramide from Endoplasmic Reticulum to Golgi Apparatus and Facilitates Classical Swine Fever Virus Assembly.
    Liu YY; Bai JS; Liu CC; Zhou JF; Chen J; Cheng Y; Zhou B
    J Virol; 2023 May; 97(5):e0036423. PubMed ID: 37255314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular Vimentin Regulates the Formation of Classical Swine Fever Virus Replication Complex through Interaction with NS5A Protein.
    Cheng Y; Lou JX; Liu YY; Liu CC; Chen J; Yang MC; Ye YB; Go YY; Zhou B
    J Virol; 2023 May; 97(5):e0177022. PubMed ID: 37129496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entry of Classical Swine Fever Virus into PK-15 Cells via a pH-, Dynamin-, and Cholesterol-Dependent, Clathrin-Mediated Endocytic Pathway That Requires Rab5 and Rab7.
    Shi BJ; Liu CC; Zhou J; Wang SQ; Gao ZC; Zhang XM; Zhou B; Chen PY
    J Virol; 2016 Oct; 90(20):9194-208. PubMed ID: 27489278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of Critical Requirements for Classical Swine Fever Virus NS2-3-Independent Virion Formation.
    Dubrau D; Schwindt S; Klemens O; Bischoff H; Tautz N
    J Virol; 2019 Sep; 93(18):. PubMed ID: 31292243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rab5, Rab7, and Rab11 Are Required for Caveola-Dependent Endocytosis of Classical Swine Fever Virus in Porcine Alveolar Macrophages.
    Zhang YN; Liu YY; Xiao FC; Liu CC; Liang XD; Chen J; Zhou J; Baloch AS; Kan L; Zhou B; Qiu HJ
    J Virol; 2018 Aug; 92(15):. PubMed ID: 29769350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attachment, Entry, and Intracellular Trafficking of Classical Swine Fever Virus.
    Guo X; Zhang M; Liu X; Zhang Y; Wang C; Guo Y
    Viruses; 2023 Sep; 15(9):. PubMed ID: 37766277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ESCRT-II Subunit EAP20/VPS25 and the Bro1 Domain Proteins HD-PTP and BROX Are Individually Dispensable for Herpes Simplex Virus 1 Replication.
    Barnes J; Wilson DW
    J Virol; 2020 Jan; 94(4):. PubMed ID: 31748394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ARF1 with Sec7 Domain-Dependent GBF1 Activates Coatomer Protein I To Support Classical Swine Fever Virus Entry.
    Zhang L; Wang T; Yi Y; Song M; Jin M; Guo K; Zhang Y
    J Virol; 2022 Mar; 96(6):e0219321. PubMed ID: 35044210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the function of ESCRT complex and LBPA in ASFV infection.
    Barrado-Gil L; García-Dorival I; Galindo I; Alonso C; Cuesta-Geijo MÁ
    Front Cell Infect Microbiol; 2023; 13():1163569. PubMed ID: 38125905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatitis C Virus Proteins Interact with the Endosomal Sorting Complex Required for Transport (ESCRT) Machinery via Ubiquitination To Facilitate Viral Envelopment.
    Barouch-Bentov R; Neveu G; Xiao F; Beer M; Bekerman E; Schor S; Campbell J; Boonyaratanakornkit J; Lindenbach B; Lu A; Jacob Y; Einav S
    mBio; 2016 Nov; 7(6):. PubMed ID: 27803188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct Roles of Cellular ESCRT-I and ESCRT-III Proteins in Efficient Entry and Egress of Budded Virions of Autographa californica Multiple Nucleopolyhedrovirus.
    Yue Q; Yu Q; Yang Q; Xu Y; Guo Y; Blissard GW; Li Z
    J Virol; 2018 Jan; 92(1):. PubMed ID: 29046462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Herpes simplex virus type 1 production requires a functional ESCRT-III complex but is independent of TSG101 and ALIX expression.
    Pawliczek T; Crump CM
    J Virol; 2009 Nov; 83(21):11254-64. PubMed ID: 19692479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinesin-1 Regulates Endocytic Trafficking of Classical Swine Fever Virus along Acetylated Microtubules.
    Lou JX; Liu YY; Bai JS; Cheng Y; Zhang J; Liu CC; Zhou B
    J Virol; 2023 Jan; 97(1):e0192922. PubMed ID: 36602362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porcine Complement Regulatory Protein CD46 Is a Major Receptor for Atypical Porcine Pestivirus but Not for Classical Swine Fever Virus.
    Cagatay GN; Antos A; Suckstorff O; Isken O; Tautz N; Becher P; Postel A
    J Virol; 2021 Apr; 95(9):. PubMed ID: 33568504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The eukaryotic translation initiation factor 3 subunit E binds to classical swine fever virus NS5A and facilitates viral replication.
    Liu X; Wang X; Wang Q; Luo M; Guo H; Gong W; Tu C; Sun J
    Virology; 2018 Feb; 515():11-20. PubMed ID: 29223786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classical swine fever virus non-structural protein 4A recruits dihydroorotate dehydrogenase to facilitate viral replication.
    Zhao B-q; Chen J; Chen J-X; Cheng Y; Zhou J-f; Bai J-s; Mao D-y; Zhou B
    J Virol; 2024 Jun; 98(6):e0049424. PubMed ID: 38757985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guanylate-Binding Protein 1, an Interferon-Induced GTPase, Exerts an Antiviral Activity against Classical Swine Fever Virus Depending on Its GTPase Activity.
    Li LF; Yu J; Li Y; Wang J; Li S; Zhang L; Xia SL; Yang Q; Wang X; Yu S; Luo Y; Sun Y; Zhu Y; Munir M; Qiu HJ
    J Virol; 2016 May; 90(9):4412-4426. PubMed ID: 26889038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.