BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 35120598)

  • 1. Tumor-associated high endothelial venules mediate lymphocyte entry into tumors and predict response to PD-1 plus CTLA-4 combination immunotherapy.
    Asrir A; Tardiveau C; Coudert J; Laffont R; Blanchard L; Bellard E; Veerman K; Bettini S; Lafouresse F; Vina E; Tarroux D; Roy S; Girault I; Molinaro I; Martins F; Scoazec JY; Ortega N; Robert C; Girard JP
    Cancer Cell; 2022 Mar; 40(3):318-334.e9. PubMed ID: 35120598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High endothelial venules predict response to PD-1 inhibitors combined with anti-angiogenesis therapy in NSCLC.
    Ye D; Jin Y; Weng Y; Cui X; Wang J; Peng M; Song Q
    Sci Rep; 2023 Sep; 13(1):16468. PubMed ID: 37777573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination anti-CTLA-4 plus anti-PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies.
    Wei SC; Anang NAS; Sharma R; Andrews MC; Reuben A; Levine JH; Cogdill AP; Mancuso JJ; Wargo JA; Pe'er D; Allison JP
    Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22699-22709. PubMed ID: 31636208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High endothelial venules (HEVs) in immunity, inflammation and cancer.
    Blanchard L; Girard JP
    Angiogenesis; 2021 Nov; 24(4):719-753. PubMed ID: 33956259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-PD-1/anti-CTLA-4 efficacy in melanoma brain metastases depends on extracranial disease and augmentation of CD8
    Taggart D; Andreou T; Scott KJ; Williams J; Rippaus N; Brownlie RJ; Ilett EJ; Salmond RJ; Melcher A; Lorger M
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1540-E1549. PubMed ID: 29386395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Checkpoint Blockade.
    Wei SC; Levine JH; Cogdill AP; Zhao Y; Anang NAS; Andrews MC; Sharma P; Wang J; Wargo JA; Pe'er D; Allison JP
    Cell; 2017 Sep; 170(6):1120-1133.e17. PubMed ID: 28803728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High endothelial venules in intracranial germinomas: Implications for lymphocytes infiltration.
    Chen H; Li G; Cui Y; Zhang Q; Li B; Liu X
    Cancer Med; 2023 Mar; 12(5):5450-5460. PubMed ID: 36259639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow cytometry analysis of endothelial cells and subsets of exhausted CD8+ T cells in murine tumor models.
    Blanchard L; Vina E; Asrir A; Tardiveau C; Coudert J; Laffont R; Tarroux D; Bettini S; Veerman K; Lafouresse F; Pichery M; Mirey E; Bellard E; Ortega N; Girard JP
    STAR Protoc; 2022 Jun; 3(2):101444. PubMed ID: 35677615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immune checkpoint ligands expressed on mature high endothelial venules predict poor prognosis of NSCLC: have a relationship with CD8
    Luo J; Shi X; Liu Y; Wang J; Wang H; Yang X; Sun Q; Hui Z; Wei F; Ren X; Zhao H
    Front Immunol; 2024; 15():1302761. PubMed ID: 38390332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancer immunotherapies transition endothelial cells into HEVs that generate TCF1
    Hua Y; Vella G; Rambow F; Allen E; Antoranz Martinez A; Duhamel M; Takeda A; Jalkanen S; Junius S; Smeets A; Nittner D; Dimmeler S; Hehlgans T; Liston A; Bosisio FM; Floris G; Laoui D; Hollmén M; Lambrechts D; Merchiers P; Marine JC; Schlenner S; Bergers G
    Cancer Cell; 2022 Dec; 40(12):1600-1618.e10. PubMed ID: 36423635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting interferon signaling and CTLA-4 enhance the therapeutic efficacy of anti-PD-1 immunotherapy in preclinical model of HPV
    Dorta-Estremera S; Hegde VL; Slay RB; Sun R; Yanamandra AV; Nicholas C; Nookala S; Sierra G; Curran MA; Sastry KJ
    J Immunother Cancer; 2019 Sep; 7(1):252. PubMed ID: 31533840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T cells isolated from patients with checkpoint inhibitor-resistant melanoma are functional and can mediate tumor regression.
    Andersen R; Borch TH; Draghi A; Gokuldass A; Rana MAH; Pedersen M; Nielsen M; Kongsted P; Kjeldsen JW; Westergaard MCW; Radic HD; Chamberlain CA; Hölmich LR; Hendel HW; Larsen MS; Met Ö; Svane IM; Donia M
    Ann Oncol; 2018 Jul; 29(7):1575-1581. PubMed ID: 29688262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting immunosuppressive Ly6C+ classical monocytes reverses anti-PD-1/CTLA-4 immunotherapy resistance.
    Rodriguez BL; Chen L; Li Y; Miao S; Peng DH; Fradette JJ; Diao L; Konen JM; Alvarez FRR; Solis LM; Yi X; Padhye A; Gibson LA; Ochieng JK; Zhou X; Wang J; Gibbons DL
    Front Immunol; 2023; 14():1161869. PubMed ID: 37449205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Checkpoint blockade immunotherapy enhances the frequency and effector function of murine tumor-infiltrating T cells but does not alter TCRβ diversity.
    Kuehm LM; Wolf K; Zahour J; DiPaolo RJ; Teague RM
    Cancer Immunol Immunother; 2019 Jul; 68(7):1095-1106. PubMed ID: 31104075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ctla-4 blockade plus adoptive T-cell transfer promotes optimal melanoma immunity in mice.
    Mahvi DA; Meyers JV; Tatar AJ; Contreras A; Suresh M; Leverson GE; Sen S; Cho CS
    J Immunother; 2015; 38(2):54-61. PubMed ID: 25658614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High endothelial venule blood vessels for tumor-infiltrating lymphocytes are associated with lymphotoxin β-producing dendritic cells in human breast cancer.
    Martinet L; Filleron T; Le Guellec S; Rochaix P; Garrido I; Girard JP
    J Immunol; 2013 Aug; 191(4):2001-8. PubMed ID: 23825314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clonality of CD4
    Arakawa A; Vollmer S; Tietze J; Galinski A; Heppt MV; Bürdek M; Berking C; Prinz JC
    Front Immunol; 2019; 10():1336. PubMed ID: 31275310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of highly activated, antigen-specific tumor-infiltrating CD8
    Vila-Leahey A; MacKay A; Portales-Cervantes L; Weir GM; Merkx-Jacques A; Stanford MM
    Oncoimmunology; 2020 Jun; 9(1):1782574. PubMed ID: 32923145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Checkpoint Blockade Immunotherapy Induces Dynamic Changes in PD-1
    Kurtulus S; Madi A; Escobar G; Klapholz M; Nyman J; Christian E; Pawlak M; Dionne D; Xia J; Rozenblatt-Rosen O; Kuchroo VK; Regev A; Anderson AC
    Immunity; 2019 Jan; 50(1):181-194.e6. PubMed ID: 30635236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macrophage-Derived CXCL9 and CXCL10 Are Required for Antitumor Immune Responses Following Immune Checkpoint Blockade.
    House IG; Savas P; Lai J; Chen AXY; Oliver AJ; Teo ZL; Todd KL; Henderson MA; Giuffrida L; Petley EV; Sek K; Mardiana S; Gide TN; Quek C; Scolyer RA; Long GV; Wilmott JS; Loi S; Darcy PK; Beavis PA
    Clin Cancer Res; 2020 Jan; 26(2):487-504. PubMed ID: 31636098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.