BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 35120626)

  • 21. Comparison of low-power, high-frequency and temporally precise optogenetic inhibition of spiking in NpHR, eNpHR3.0 and Jaws-expressing neurons.
    Bansal H; Gupta N; Roy S
    Biomed Phys Eng Express; 2020 May; 6(4):045011. PubMed ID: 33444272
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrafast light targeting for high-throughput precise control of neuronal networks.
    Faini G; Tanese D; Molinier C; Telliez C; Hamdani M; Blot F; Tourain C; de Sars V; Del Bene F; Forget BC; Ronzitti E; Emiliani V
    Nat Commun; 2023 Apr; 14(1):1888. PubMed ID: 37019891
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT).
    Pégard NC; Mardinly AR; Oldenburg IA; Sridharan S; Waller L; Adesnik H
    Nat Commun; 2017 Oct; 8(1):1228. PubMed ID: 29089483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Next-generation transgenic mice for optogenetic analysis of neural circuits.
    Asrican B; Augustine GJ; Berglund K; Chen S; Chow N; Deisseroth K; Feng G; Gloss B; Hira R; Hoffmann C; Kasai H; Katarya M; Kim J; Kudolo J; Lee LM; Lo SQ; Mancuso J; Matsuzaki M; Nakajima R; Qiu L; Tan G; Tang Y; Ting JT; Tsuda S; Wen L; Zhang X; Zhao S
    Front Neural Circuits; 2013; 7():160. PubMed ID: 24324405
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimating Neural Background Input with Controlled and Fast Perturbations: A Bandwidth Comparison between Inhibitory Opsins and Neural Circuits.
    Eriksson D
    Front Neural Circuits; 2016; 10():58. PubMed ID: 27574506
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Holographic optogenetic stimulation of patterned neuronal activity for vision restoration.
    Reutsky-Gefen I; Golan L; Farah N; Schejter A; Tsur L; Brosh I; Shoham S
    Nat Commun; 2013; 4():1509. PubMed ID: 23443537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optogenetic strategies for high-efficiency all-optical interrogation using blue-light-sensitive opsins.
    Forli A; Pisoni M; Printz Y; Yizhar O; Fellin T
    Elife; 2021 May; 10():. PubMed ID: 34032211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of an optogenetic toolkit for neural circuit dissection in squirrel monkeys.
    O'Shea DJ; Kalanithi P; Ferenczi EA; Hsueh B; Chandrasekaran C; Goo W; Diester I; Ramakrishnan C; Kaufman MT; Ryu SI; Yeom KW; Deisseroth K; Shenoy KV
    Sci Rep; 2018 Apr; 8(1):6775. PubMed ID: 29712920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Holographic two-photon activation for synthetic optogenetics.
    Carmi I; De Battista M; Maddalena L; Carroll EC; Kienzler MA; Berlin S
    Nat Protoc; 2019 Mar; 14(3):864-900. PubMed ID: 30804570
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Holographic Optogenetic Activation of Neurons Eliciting Locomotion in Head-Embedded Larval Zebrafish.
    Jia X; Wyart C
    Methods Mol Biol; 2024; 2707():125-140. PubMed ID: 37668909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards circuit optogenetics.
    Chen IW; Papagiakoumou E; Emiliani V
    Curr Opin Neurobiol; 2018 Jun; 50():179-189. PubMed ID: 29635216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A live cell assay of GPCR coupling allows identification of optogenetic tools for controlling Go and Gi signaling.
    Ballister ER; Rodgers J; Martial F; Lucas RJ
    BMC Biol; 2018 Jan; 16(1):10. PubMed ID: 29338718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-Photon Bidirectional Control and Imaging of Neuronal Excitability with High Spatial Resolution In Vivo.
    Forli A; Vecchia D; Binini N; Succol F; Bovetti S; Moretti C; Nespoli F; Mahn M; Baker CA; Bolton MM; Yizhar O; Fellin T
    Cell Rep; 2018 Mar; 22(11):3087-3098. PubMed ID: 29539433
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A calibrated optogenetic toolbox of stable zebrafish opsin lines.
    Antinucci P; Dumitrescu A; Deleuze C; Morley HJ; Leung K; Hagley T; Kubo F; Baier H; Bianco IH; Wyart C
    Elife; 2020 Mar; 9():. PubMed ID: 32216873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo.
    Packer AM; Russell LE; Dalgleish HW; Häusser M
    Nat Methods; 2015 Feb; 12(2):140-6. PubMed ID: 25532138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional interrogation of neural circuits with virally transmitted optogenetic tools.
    De La Crompe B; Coulon P; Diester I
    J Neurosci Methods; 2020 Nov; 345():108905. PubMed ID: 32795553
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical vagus nerve modulation of heart and respiration via heart-injected retrograde AAV.
    Fontaine AK; Futia GL; Rajendran PS; Littich SF; Mizoguchi N; Shivkumar K; Ardell JL; Restrepo D; Caldwell JH; Gibson EA; Weir RFF
    Sci Rep; 2021 Feb; 11(1):3664. PubMed ID: 33574459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large-scale femtosecond holography for near simultaneous optogenetic neural modulation.
    Sun S; Zhang G; Cheng Z; Gan W; Cui M
    Opt Express; 2019 Oct; 27(22):32228-32234. PubMed ID: 31684439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multifunctional optrode for opsin delivery, optical stimulation, and electrophysiological recordings in freely moving rats.
    Sharma K; Jäckel Z; Schneider A; Paul O; Diester I; Ruther P
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34795066
    [No Abstract]   [Full Text] [Related]  

  • 40. Optogenetic approaches to treat epilepsy.
    Wykes RC; Kullmann DM; Pavlov I; Magloire V
    J Neurosci Methods; 2016 Feb; 260():215-20. PubMed ID: 26072246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.