BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 35120626)

  • 41. Frequency-Specific Optogenetic Deep Brain Stimulation of Subthalamic Nucleus Improves Parkinsonian Motor Behaviors.
    Yu C; Cassar IR; Sambangi J; Grill WM
    J Neurosci; 2020 May; 40(22):4323-4334. PubMed ID: 32312888
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of discontinuous blue light stimulation on the electrophysiological properties of neurons lacking opsin expression in vitro: Implications for optogenetic experiments.
    Lightning A; Bourzeix M; Beurrier C; Kuczewski N
    Eur J Neurosci; 2023 Mar; 57(6):885-899. PubMed ID: 36726326
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The microbial opsin family of optogenetic tools.
    Zhang F; Vierock J; Yizhar O; Fenno LE; Tsunoda S; Kianianmomeni A; Prigge M; Berndt A; Cushman J; Polle J; Magnuson J; Hegemann P; Deisseroth K
    Cell; 2011 Dec; 147(7):1446-57. PubMed ID: 22196724
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain.
    Bovetti S; Moretti C; Zucca S; Dal Maschio M; Bonifazi P; Fellin T
    Sci Rep; 2017 Jan; 7():40041. PubMed ID: 28053310
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Two-photon optogenetics of dendritic spines and neural circuits.
    Packer AM; Peterka DS; Hirtz JJ; Prakash R; Deisseroth K; Yuste R
    Nat Methods; 2012 Dec; 9(12):1202-5. PubMed ID: 23142873
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mouse transgenic approaches in optogenetics.
    Zeng H; Madisen L
    Prog Brain Res; 2012; 196():193-213. PubMed ID: 22341327
    [TBL] [Abstract][Full Text] [Related]  

  • 47. All-optical interrogation of neural circuits in behaving mice.
    Russell LE; Dalgleish HWP; Nutbrown R; Gauld OM; Herrmann D; Fişek M; Packer AM; Häusser M
    Nat Protoc; 2022 Jul; 17(7):1579-1620. PubMed ID: 35478249
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology.
    Zou L; Tian H; Guan S; Ding J; Gao L; Wang J; Fang Y
    Nat Commun; 2021 Oct; 12(1):5871. PubMed ID: 34620851
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The development and application of optogenetics.
    Fenno L; Yizhar O; Deisseroth K
    Annu Rev Neurosci; 2011; 34():389-412. PubMed ID: 21692661
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Targeted cortical reorganization using optogenetics in non-human primates.
    Yazdan-Shahmorad A; Silversmith DB; Kharazia V; Sabes PN
    Elife; 2018 May; 7():. PubMed ID: 29809133
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optogenetic Potentials of Diverse Animal Opsins: Parapinopsin, Peropsin, LWS Bistable Opsin.
    Koyanagi M; Saito T; Wada S; Nagata T; Kawano-Yamashita E; Terakita A
    Adv Exp Med Biol; 2021; 1293():141-151. PubMed ID: 33398811
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An Ultra-Sensitive Step-Function Opsin for Minimally Invasive Optogenetic Stimulation in Mice and Macaques.
    Gong X; Mendoza-Halliday D; Ting JT; Kaiser T; Sun X; Bastos AM; Wimmer RD; Guo B; Chen Q; Zhou Y; Pruner M; Wu CW; Park D; Deisseroth K; Barak B; Boyden ES; Miller EK; Halassa MM; Fu Z; Bi G; Desimone R; Feng G
    Neuron; 2020 Jul; 107(1):38-51.e8. PubMed ID: 32353253
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Diversity of animal opsin-based pigments and their optogenetic potential.
    Koyanagi M; Terakita A
    Biochim Biophys Acta; 2014 May; 1837(5):710-6. PubMed ID: 24041647
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope.
    Szabo V; Ventalon C; De Sars V; Bradley J; Emiliani V
    Neuron; 2014 Dec; 84(6):1157-69. PubMed ID: 25433638
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theoretical Analysis of Low-power Bidirectional Optogenetic Control of High-frequency Neural Codes with Single Spike Resolution.
    Bansal H; Gupta N; Roy S
    Neuroscience; 2020 Nov; 449():165-188. PubMed ID: 32941934
    [TBL] [Abstract][Full Text] [Related]  

  • 56. One-step optogenetics with multifunctional flexible polymer fibers.
    Park S; Guo Y; Jia X; Choe HK; Grena B; Kang J; Park J; Lu C; Canales A; Chen R; Yim YS; Choi GB; Fink Y; Anikeeva P
    Nat Neurosci; 2017 Apr; 20(4):612-619. PubMed ID: 28218915
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Temperature Rise under Two-Photon Optogenetic Brain Stimulation.
    Picot A; Dominguez S; Liu C; Chen IW; Tanese D; Ronzitti E; Berto P; Papagiakoumou E; Oron D; Tessier G; Forget BC; Emiliani V
    Cell Rep; 2018 Jul; 24(5):1243-1253.e5. PubMed ID: 30067979
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Histological assessment of optogenetic tools to study fronto-visual and fronto-parietal cortical networks in the rhesus macaque.
    Fortuna MG; Hüer J; Guo H; Gruber J; Gruber-Dujardin E; Staiger JF; Scherberger H; Treue S; Gail A
    Sci Rep; 2020 Jul; 10(1):11051. PubMed ID: 32632196
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Holographic microscope and its biological application.
    Quan X; Kato D; Daria V; Matoba O; Wake H
    Neurosci Res; 2022 Jun; 179():57-64. PubMed ID: 34740727
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Defining parameters of specificity for bioluminescent optogenetic activation of neurons using in vitro multi electrode arrays (MEA).
    Prakash M; Medendorp WE; Hochgeschwender U
    J Neurosci Res; 2020 Mar; 98(3):437-447. PubMed ID: 30152529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.