BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35120812)

  • 1. Decolorization of cationic dyes under alkaline conditions by Iodidimonas sp. Q-1 multicopper oxidase.
    Ebihara K; Yoshikawa J; Horiguchi H; Amachi S
    J Biosci Bioeng; 2022 Apr; 133(4):323-328. PubMed ID: 35120812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decolorization of recalcitrant dyes by a multicopper oxidase produced by Iodidimonas sp. Q-1 with iodide as a novel inorganic natural redox mediator.
    Taguchi T; Ebihara K; Yanagisaki C; Yoshikawa J; Horiguchi H; Amachi S
    Sci Rep; 2018 Apr; 8(1):6717. PubMed ID: 29712927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Genus
    Amachi S; Iino T
    Microorganisms; 2022 Aug; 10(8):. PubMed ID: 36014078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study on decolorization of triphenylmethane dyes by DTT].
    Pan T; Liu DW; Ren SZ; Guo J; Sun GP
    Huan Jing Ke Xue; 2012 Mar; 33(3):866-70. PubMed ID: 22624380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decolorization of dye solutions with Ruditapes philippinarum conglutination mud and the isolated bacteria.
    Wei Y; Mu J; Zhu X; Gao Q; Zhang Y
    J Environ Sci (China); 2011 Jun; 23 Suppl():S142-5. PubMed ID: 25084578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of static and shake culture in the decolorization of textile dyes and dye effluents by Phanerochaete chrysoporium.
    Sani RK; Azmi W; Banerjee UC
    Folia Microbiol (Praha); 1998; 43(1):85-8. PubMed ID: 9616055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile green synthesis of functional nanoscale zero-valent iron and studies of its activity toward ultrasound-enhanced decolorization of cationic dyes.
    Wang X; Wang A; Ma J; Fu M
    Chemosphere; 2017 Jan; 166():80-88. PubMed ID: 27689887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel enzyme-based antimicrobial system comprising iodide and a multicopper oxidase isolated from Alphaproteobacterium strain Q-1.
    Yuliana T; Ebihara K; Suzuki M; Shimonaka C; Amachi S
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10011-8. PubMed ID: 26254787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave-accelerated sorption of cationic dyes onto green marine algal biomass.
    Elgarahy AM; Elwakeel KZ; Elshoubaky GA; Mohammad SH
    Environ Sci Pollut Res Int; 2019 Aug; 26(22):22704-22722. PubMed ID: 31172437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of grape seed and its natural polyphenol extracts as a natural organic coagulant for removal of cationic dyes.
    Jeon JR; Kim EJ; Kim YM; Murugesan K; Kim JH; Chang YS
    Chemosphere; 2009 Nov; 77(8):1090-8. PubMed ID: 19786292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of triphenylmethane dyes by Streptomyces bacillaris: A study on decolorization, enzymatic reactions and toxicity of treated dye solutions.
    Adenan NH; Lim YY; Ting ASY
    J Environ Manage; 2022 Sep; 318():115520. PubMed ID: 35717698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decolorization of malachite green and crystal violet by waterborne pathogenic mycobacteria.
    Jones JJ; Falkinham JO
    Antimicrob Agents Chemother; 2003 Jul; 47(7):2323-6. PubMed ID: 12821489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Biosorption of crystal violet and malachite green by Rhodotorula graminis Y-5].
    Hu R; Huang JB; Yang ZP; Cheng ZZ; Jing DJ; Huang QM
    Ying Yong Sheng Tai Xue Bao; 2011 Dec; 22(12):3293-9. PubMed ID: 22384600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption Capability of Cationic Dyes (Methylene Blue and Crystal Violet) onto Poly-γ-glutamic Acid.
    Ogata F; Nagai N; Kawasaki N
    Chem Pharm Bull (Tokyo); 2017; 65(3):268-275. PubMed ID: 28250349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decolorization and biotransformation of triphenylmethane dye, methyl violet, by Aspergillus sp. isolated from Ladakh, India.
    Kumar CG; Mongolla P; Basha A; Joseph J; Sarma VU; Kamal A
    J Microbiol Biotechnol; 2011 Mar; 21(3):267-73. PubMed ID: 21464597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of dye functional group on the photocatalytic degradation of dyes by nano-TiO2.
    Vinu R; Akki SU; Madras G
    J Hazard Mater; 2010 Apr; 176(1-3):765-73. PubMed ID: 20018445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into performance and mechanism of tea polyphenols and ferric ions on reductive decolorization of malachite green cationic dye under moderate conditions.
    Xie Y; Huang J; Dong H; Wu T; Yu L; Liu G; Yu Y
    J Environ Manage; 2020 May; 261():110226. PubMed ID: 32148296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial degradation mechanisms of malachite green and methyl violet B by Shewanella decolorationis NTOU1 under anaerobic conditions.
    Chen CH; Chang CF; Liu SM
    J Hazard Mater; 2010 May; 177(1-3):281-9. PubMed ID: 20060225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and Characterization of the Laccase Involved in Dye Decolorization by the White-Rot Fungus
    Jeon SJ; Lim SJ
    J Microbiol Biotechnol; 2017 Jun; 27(6):1120-1127. PubMed ID: 28376610
    [No Abstract]   [Full Text] [Related]  

  • 20. Efficient decolorization of recalcitrant dyes at neutral/alkaline pH by a new bacterial laccase-mediator system.
    Coria-Oriundo LL; Battaglini F; Wirth SA
    Ecotoxicol Environ Saf; 2021 Jul; 217():112237. PubMed ID: 33892342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.