These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35121254)

  • 1. Natural dynamics and residues of pymetrozine for typical rice-growing areas of China.
    Tudi M; Atabila A; Ruan HD; Wang L; Lyu J; Tong S; Yu QJ; Sadler R; Phung DT; Connell D
    Ecotoxicol Environ Saf; 2022 Mar; 232():113230. PubMed ID: 35121254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residues and dynamics of pymetrozine in rice field ecosystem.
    Li C; Yang T; Huangfu W; Wu Y
    Chemosphere; 2011 Feb; 82(6):901-4. PubMed ID: 21074245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissipation and residue of pymetrozine in rice field ecosystem.
    Zhang Y; Zhang L; Xu P; Li J; Wang H
    Environ Monit Assess; 2015 Mar; 187(3):78. PubMed ID: 25655126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residues and degradation dynamics of pymetrozine and chlorpyrifos in rice field ecosystem.
    Wei H; Chen G; Yang X
    J Environ Sci Health B; 2022; 57(5):339-349. PubMed ID: 35362360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental monitoring and potential health risk assessment from Pymetrozine exposure among communities in typical rice-growing areas of China.
    Tudi M; Wang L; Ruan HD; Tong S; Atabila A; Sadler R; Yu QJ; Connell D; Phung DT
    Environ Sci Pollut Res Int; 2022 Aug; 29(39):59547-59560. PubMed ID: 35391644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cadmium (Cd) distribution and contamination in Chinese paddy soils on national scale.
    Liu X; Tian G; Jiang D; Zhang C; Kong L
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):17941-52. PubMed ID: 27255314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissipation Dynamic and Final Residues of Oxadiargyl in Paddy Fields Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry Coupled with Modified QuEChERS Method.
    Deng X; Zhou Y; Zheng W; Bai L; Zhou X
    Int J Environ Res Public Health; 2018 Aug; 15(8):. PubMed ID: 30087273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissipation of difenoconazole in rice, paddy soil, and paddy water under field conditions.
    Wang K; Wu JX; Zhang HY
    Ecotoxicol Environ Saf; 2012 Dec; 86():111-5. PubMed ID: 23062559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residues of the fungicide epoxiconazole in rice and paddy in the Chinese field ecosystem.
    Yan B; Ye F; Gao D
    Pest Manag Sci; 2015 Jan; 71(1):65-71. PubMed ID: 24550150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Characteristics and Inputs of Cd Contamination in Paddy Soils in Typical Mining and Industrial Areas in Youxian County, Hunan Province].
    Zhang M; Wang Mei-e ; Chen WP; Niu JJ
    Huan Jing Ke Xue; 2015 Apr; 36(4):1425-30. PubMed ID: 26164922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cd Content Characteristics and Ecological Risk Assessment of Paddy Soil in High Cadmium Anomaly Area of Guangxi].
    Song B; Wang FP; Zhou L; Wu Y; Pang R; Chen TB
    Huan Jing Ke Xue; 2019 May; 40(5):2443-2452. PubMed ID: 31087886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, Southern China.
    Wang M; Chen W; Peng C
    Chemosphere; 2016 Feb; 144():346-51. PubMed ID: 26378871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Cd Balance Analysis of a Typical Rice Paddy System in Central Hunan].
    Jiang K; Deng X; Zhou H; Long J; Li XY; Dong X; Wang SB; Liu WH; Hou HB; Peng PQ; Liao BH
    Huan Jing Ke Xue; 2019 Jul; 40(7):3324-3330. PubMed ID: 31854734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissipation of chlorpyrifos and residue analysis in rice, soil and water under paddy field conditions.
    Zhang X; Shen Y; Yu XY; Liu XJ
    Ecotoxicol Environ Saf; 2012 Apr; 78():276-80. PubMed ID: 22195763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of chlorantraniliprole 18.5% SC in the paddy ecosystem and its risk assessment.
    Mahato S; Naik RH; Bheemanna M; Pallavi MS; Hurali S; Rao SN; Naik MN; Paramsivam M
    Sci Rep; 2023 Apr; 13(1):5464. PubMed ID: 37015957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of water-saving irrigation on the residues and risk of polycyclic aromatic hydrocarbon in paddy field.
    Zhao Z; Xia L; Jiang X; Gao Y
    Sci Total Environ; 2018 Mar; 618():736-745. PubMed ID: 29054619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissipation and residues of trifloxystrobin and its metabolite in rice under field conditions.
    Li P; Wang L; Hao X; Han L
    Environ Toxicol Chem; 2014 Dec; 33(12):2654-60. PubMed ID: 25158269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the dissipation pattern and risk assessment of metalaxyl-M in rice grains and paddy soil and water by liquid chromatography-tandem mass spectrometry.
    He Y; Jiao X; Zhang T; Wang M; Khan M; Khan MR; She Y
    Environ Sci Pollut Res Int; 2021 Jan; 28(4):4245-4252. PubMed ID: 32939654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic study of the degradation of the insecticide pymetrozine in a vegetable-field ecosystem.
    Shen G; Hu X; Hu Y
    J Hazard Mater; 2009 May; 164(2-3):497-501. PubMed ID: 18801616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb-Zn mine in Korea.
    Jung MC; Thornton I
    Sci Total Environ; 1997 May; 198(2):105-21. PubMed ID: 9167264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.