These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 35121280)
1. 3D reconstruction of curvilinear structures with stereo matching deep convolutional neural networks. Altingövde O; Mishchuk A; Ganeeva G; Oveisi E; Hebert C; Fua P Ultramicroscopy; 2022 Apr; 234():113460. PubMed ID: 35121280 [TBL] [Abstract][Full Text] [Related]
2. Stereo-vision three-dimensional reconstruction of curvilinear structures imaged with a TEM. Oveisi E; Letouzey A; De Zanet S; Lucas G; Cantoni M; Fua P; Hébert C Ultramicroscopy; 2018 Jan; 184(Pt A):116-124. PubMed ID: 28888106 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional reconstruction and quantification of dislocation substructures from transmission electron microscopy stereo pairs. Agudo Jácome L; Pöthkow K; Paetsch O; Hege HC Ultramicroscopy; 2018 Dec; 195():157-170. PubMed ID: 30292862 [TBL] [Abstract][Full Text] [Related]
4. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353 [TBL] [Abstract][Full Text] [Related]
5. A neural network with encoded visible edge prior for limited-angle computed tomography reconstruction. Ma G; Zhang Y; Zhao X; Wang T; Li H Med Phys; 2021 Oct; 48(10):6464-6481. PubMed ID: 34482570 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Chen CC; Zhu C; White ER; Chiu CY; Scott MC; Regan BC; Marks LD; Huang Y; Miao J Nature; 2013 Apr; 496(7443):74-7. PubMed ID: 23535594 [TBL] [Abstract][Full Text] [Related]
7. CS Mou L; Zhao Y; Fu H; Liu Y; Cheng J; Zheng Y; Su P; Yang J; Chen L; Frangi AF; Akiba M; Liu J Med Image Anal; 2021 Jan; 67():101874. PubMed ID: 33166771 [TBL] [Abstract][Full Text] [Related]
8. Pear Recognition in an Orchard from 3D Stereo Camera Datasets to Develop a Fruit Picking Mechanism Using Mask R-CNN. Pan S; Ahamed T Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684807 [TBL] [Abstract][Full Text] [Related]
9. Fusing 2D and 3D convolutional neural networks for the segmentation of aorta and coronary arteries from CT images. Gu L; Cai XC Artif Intell Med; 2021 Nov; 121():102189. PubMed ID: 34763804 [TBL] [Abstract][Full Text] [Related]
11. Slanted support window-based stereo matching for surface reconstruction of microscopic samples. Baghaie A; Zhang C; Bakhshinejad A; Owen HA; Chao H; D'Souza RM; Yu Z Micron; 2017 Dec; 103():12-21. PubMed ID: 28942369 [TBL] [Abstract][Full Text] [Related]
12. FCNet: Stereo 3D Object Detection with Feature Correlation Networks. Wu Y; Liu Z; Chen Y; Zheng X; Zhang Q; Yang M; Tang G Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010784 [TBL] [Abstract][Full Text] [Related]
13. Tilt-less 3-D electron imaging and reconstruction of complex curvilinear structures. Oveisi E; Letouzey A; Alexander DTL; Jeangros Q; Schäublin R; Lucas G; Fua P; Hébert C Sci Rep; 2017 Sep; 7(1):10630. PubMed ID: 28878280 [TBL] [Abstract][Full Text] [Related]
14. A failure to learn object shape geometry: Implications for convolutional neural networks as plausible models of biological vision. Heinke D; Wachman P; van Zoest W; Leek EC Vision Res; 2021 Dec; 189():81-92. PubMed ID: 34634753 [TBL] [Abstract][Full Text] [Related]
15. Depth Estimation for Integral Imaging Microscopy Using a 3D-2D CNN with a Weighted Median Filter. Imtiaz SM; Kwon KC; Hossain MB; Alam MS; Jeon SH; Kim N Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890968 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of multislice inputs to convolutional neural networks for medical image segmentation. Vu MH; Grimbergen G; Nyholm T; Löfstedt T Med Phys; 2020 Dec; 47(12):6216-6231. PubMed ID: 33169365 [TBL] [Abstract][Full Text] [Related]
17. Adaptable 2D to 3D Stereo Vision Image Conversion Based on a Deep Convolutional Neural Network and Fast Inpaint Algorithm. Hachaj T Entropy (Basel); 2023 Aug; 25(8):. PubMed ID: 37628242 [TBL] [Abstract][Full Text] [Related]
18. Joint stereo 3D object detection and implicit surface reconstruction. Li S; Huang X; Liu Z; Cheng KT Sci Rep; 2024 Jun; 14(1):13893. PubMed ID: 38886528 [TBL] [Abstract][Full Text] [Related]
19. Representations of regular and irregular shapes by deep Convolutional Neural Networks, monkey inferotemporal neurons and human judgments. Kalfas I; Vinken K; Vogels R PLoS Comput Biol; 2018 Oct; 14(10):e1006557. PubMed ID: 30365485 [TBL] [Abstract][Full Text] [Related]
20. DeepBranch: Deep Neural Networks for Branch Point Detection in Biomedical Images. Tan Y; Liu M; Chen W; Wang X; Peng H; Wang Y IEEE Trans Med Imaging; 2020 Apr; 39(4):1195-1205. PubMed ID: 31603774 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]