These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35121382)

  • 21. Mechanisms used to increase peak propulsive force following 12-weeks of gait training in individuals poststroke.
    Hsiao H; Knarr BA; Pohlig RT; Higginson JS; Binder-Macleod SA
    J Biomech; 2016 Feb; 49(3):388-95. PubMed ID: 26776931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomechanical differences between self-paced and fixed-speed treadmill walking in persons after stroke.
    Van Bladel A; De Ridder R; Palmans T; Oostra K; Cambier D
    Hum Mov Sci; 2022 Oct; 85():102983. PubMed ID: 35933827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of backward-directed resistance on propulsive force generation during split-belt treadmill walking in non-impaired individuals.
    Moradian N; Ko M; Hurt CP; Brown DA
    Front Hum Neurosci; 2023; 17():1214967. PubMed ID: 38111676
    [TBL] [Abstract][Full Text] [Related]  

  • 24. User-driven treadmill walking promotes healthy step width after stroke.
    Donlin MC; Ray NT; Higginson JS
    Gait Posture; 2021 May; 86():256-259. PubMed ID: 33812294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Presence of a Paretic Propulsion Reserve During Gait in Individuals Following Stroke.
    Lewek MD; Raiti C; Doty A
    Neurorehabil Neural Repair; 2018 Dec; 32(12):1011-1019. PubMed ID: 30558525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Speed-related but not detrended gait variability increases with more sensitive self-paced treadmill controllers at multiple slopes.
    Castano CR; Huang HJ
    PLoS One; 2021; 16(5):e0251229. PubMed ID: 33961654
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: A review.
    Roelker SA; Bowden MG; Kautz SA; Neptune RR
    Gait Posture; 2019 Feb; 68():6-14. PubMed ID: 30408710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Paretic propulsion changes with handrail Use in individuals post-stroke.
    Hinton EH; Bierner S; Reisman DS; Likens A; Knarr BA
    Heliyon; 2024 Mar; 10(5):e26924. PubMed ID: 38463863
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-integrated propulsive and braking impulses do not depend on walking speed.
    Deffeyes JE; Peters DM
    Gait Posture; 2021 Jul; 88():258-263. PubMed ID: 34139632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ankle stiffness modulation during different gait speeds in individuals post-stroke.
    Hinton EH; Likens A; Hsiao HY; Binder-Markey BI; Binder-Macleod SA; Knarr BA
    Clin Biomech (Bristol, Avon); 2022 Oct; 99():105761. PubMed ID: 36099707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic structure of variability in joint angles and center of mass position during user-driven treadmill walking.
    Kempski KM; Ray NT; Knarr BA; Higginson JS
    Gait Posture; 2019 Jun; 71():241-244. PubMed ID: 31082656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Propulsive Force Modulation Drives Split-Belt Treadmill Adaptation in People with Multiple Sclerosis.
    Hagen AC; Patrick CM; Bast IE; Fling BW
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Slow and faster post-stroke walkers have a different trunk progression and braking impulse during gait.
    Duclos NC; Duclos C; Nadeau S
    Gait Posture; 2019 Feb; 68():483-487. PubMed ID: 30616177
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of lateral weight transfer is associated with walking speed in individuals post-stroke.
    Hsiao H; Gray VL; Creath RA; Binder-Macleod SA; Rogers MW
    J Biomech; 2017 Jul; 60():72-78. PubMed ID: 28687151
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differences in self-selected and fastest-comfortable walking in post-stroke hemiparetic persons.
    Beaman CB; Peterson CL; Neptune RR; Kautz SA
    Gait Posture; 2010 Mar; 31(3):311-6. PubMed ID: 20006505
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Augmenting propulsion demands during split-belt walking increases locomotor adaptation of asymmetric step lengths.
    Sombric CJ; Torres-Oviedo G
    J Neuroeng Rehabil; 2020 Jun; 17(1):69. PubMed ID: 32493440
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acclimatization of force production during walking in persons with Parkinson's disease.
    Pappas MC; Baudendistel ST; Schmitt AC; Au KLK; Hass CJ
    J Biomech; 2023 Feb; 148():111477. PubMed ID: 36739723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A test of the functional asymmetry hypothesis in walking.
    Seeley MK; Umberger BR; Shapiro R
    Gait Posture; 2008 Jul; 28(1):24-8. PubMed ID: 17997095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leg extension is an important predictor of paretic leg propulsion in hemiparetic walking.
    Peterson CL; Cheng J; Kautz SA; Neptune RR
    Gait Posture; 2010 Oct; 32(4):451-6. PubMed ID: 20656492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.