These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35121382)

  • 41. Leg extension is an important predictor of paretic leg propulsion in hemiparetic walking.
    Peterson CL; Cheng J; Kautz SA; Neptune RR
    Gait Posture; 2010 Oct; 32(4):451-6. PubMed ID: 20656492
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Slow Walking in Individuals with Chronic Post-Stroke Hemiparesis: Speed Mediated Effects of Gait Kinetics and Ankle Kinematics.
    Liang JN; Ho KY; Lee YJ; Ackley C; Aki K; Arias J; Trinh J
    Brain Sci; 2021 Mar; 11(3):. PubMed ID: 33805603
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Training propulsion: Locomotor adaptation to accelerations of the trailing limb.
    Farrens AJ; Marbaker R; Lilley M; Sergi F
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():59-64. PubMed ID: 31374607
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Linking gait mechanics with perceived quality of life and participation after stroke.
    Rowland DM; Lewek MD
    PLoS One; 2022; 17(9):e0274511. PubMed ID: 36129881
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Combined effects of fast treadmill walking and functional electrical stimulation on post-stroke gait.
    Kesar TM; Reisman DS; Perumal R; Jancosko AM; Higginson JS; Rudolph KS; Binder-Macleod SA
    Gait Posture; 2011 Feb; 33(2):309-13. PubMed ID: 21183351
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effectiveness of rehabilitation interventions to improve paretic propulsion in individuals with stroke - A systematic review.
    Alingh JF; Groen BE; Van Asseldonk EHF; Geurts ACH; Weerdesteyn V
    Clin Biomech (Bristol, Avon); 2020 Jan; 71():176-188. PubMed ID: 31770660
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Can treadmill walking be used to assess propulsion generation?
    Goldberg EJ; Kautz SA; Neptune RR
    J Biomech; 2008; 41(8):1805-8. PubMed ID: 18436229
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanisms to increase propulsive force for individuals poststroke.
    Hsiao H; Knarr BA; Higginson JS; Binder-Macleod SA
    J Neuroeng Rehabil; 2015 Apr; 12():40. PubMed ID: 25898145
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Baseline predictors of treatment gains in peak propulsive force in individuals poststroke.
    Hsiao H; Higginson JS; Binder-Macleod SA
    J Neuroeng Rehabil; 2016 Jan; 13():2. PubMed ID: 26767921
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Brake-Based Overground Gait Rehabilitation Device for Altering Propulsion Impulse Symmetry.
    Hu S; Fjeld K; Vasudevan EV; Kuchenbecker KJ
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640938
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Outdoor walking exhibits peak ankle and knee flexion differences compared to fixed and adaptive-speed treadmills in older adults.
    Parker SM; Crenshaw J; Hunt NH; Burcal C; Knarr BA
    Biomed Eng Online; 2021 Oct; 20(1):104. PubMed ID: 34654416
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of foot and ankle prosthetic components on braking and propulsive impulses during transtibial amputee gait.
    Zmitrewicz RJ; Neptune RR; Walden JG; Rogers WE; Bosker GW
    Arch Phys Med Rehabil; 2006 Oct; 87(10):1334-9. PubMed ID: 17023242
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improved cortical activity and reduced gait asymmetry during poststroke self-paced walking rehabilitation.
    Oh K; Park J; Jo SH; Hong SJ; Kim WS; Paik NJ; Park HS
    J Neuroeng Rehabil; 2021 Apr; 18(1):60. PubMed ID: 33849557
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Human Gait Entrainment to Soft Robotic Hip Perturbation During Simulated Overground Walking.
    Save OM; Das S; Carlson E; Ahn J; Lee H
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():442-451. PubMed ID: 38227410
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Energy exchange between subject and belt during treadmill walking.
    Sloot LH; van der Krogt MM; Harlaar J
    J Biomech; 2014 Apr; 47(6):1510-3. PubMed ID: 24589022
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis.
    Balasubramanian CK; Bowden MG; Neptune RR; Kautz SA
    Arch Phys Med Rehabil; 2007 Jan; 88(1):43-9. PubMed ID: 17207674
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Braking and propulsive impulses increase with speed during accelerated and decelerated walking.
    Peterson CL; Kautz SA; Neptune RR
    Gait Posture; 2011 Apr; 33(4):562-7. PubMed ID: 21356590
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Are Age, Self-Selected Walking Speed, or Propulsion Force Predictors of Gait-Related Changes in Older Adults?
    Malde D; Pizzimenti N; McCamley J; Sumner B
    J Appl Biomech; 2023 Apr; 39(2):99-109. PubMed ID: 36898389
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Limb and joint kinetics during walking in individuals with Mild-Moderate Parkinson's disease.
    Hayworth EM; Casnave SM; Duppen C; Rowland D; Browner N; Lewek MD
    J Biomech; 2024 Apr; 167():112076. PubMed ID: 38583376
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Real-time feedback control of split-belt ratio to induce targeted step length asymmetry.
    Carr S; Rasouli F; Kim SH; Reed KB
    J Neuroeng Rehabil; 2022 Jun; 19(1):65. PubMed ID: 35773672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.