These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 35121420)
1. Chlorophyll and phycocyanin in-situ fluorescence in mixed cyanobacterial species assemblages: Effects of morphology, cell size and growth phase. Rousso BZ; Bertone E; Stewart R; Aguiar A; Chuang A; Hamilton DP; Burford MA Water Res; 2022 Apr; 212():118127. PubMed ID: 35121420 [TBL] [Abstract][Full Text] [Related]
2. Light-induced fluorescence quenching leads to errors in sensor measurements of phytoplankton chlorophyll and phycocyanin. Rousso BZ; Bertone E; Stewart RA; Rinke K; Hamilton DP Water Res; 2021 Jun; 198():117133. PubMed ID: 33895586 [TBL] [Abstract][Full Text] [Related]
5. Cyanobacterial pigment concentrations in inland waters: Novel semi-analytical algorithms for multi- and hyperspectral remote sensing data. Dev PJ; Sukenik A; Mishra DR; Ostrovsky I Sci Total Environ; 2022 Jan; 805():150423. PubMed ID: 34818810 [TBL] [Abstract][Full Text] [Related]
6. Sensor manufacturer, temperature, and cyanobacteria morphology affect phycocyanin fluorescence measurements. Hodges CM; Wood SA; Puddick J; McBride CG; Hamilton DP Environ Sci Pollut Res Int; 2018 Jan; 25(2):1079-1088. PubMed ID: 29079975 [TBL] [Abstract][Full Text] [Related]
7. Measurement of cyanobacteria using in-vivo fluoroscopy -- effect of cyanobacterial species, pigments, and colonies. Chang DW; Hobson P; Burch M; Lin TF Water Res; 2012 Oct; 46(16):5037-48. PubMed ID: 22824675 [TBL] [Abstract][Full Text] [Related]
8. Monitoring of potentially toxic cyanobacteria using an online multi-probe in drinking water sources. Zamyadi A; McQuaid N; Prévost M; Dorner S J Environ Monit; 2012 Feb; 14(2):579-88. PubMed ID: 22159157 [TBL] [Abstract][Full Text] [Related]
9. Remote estimation of phycocyanin (PC) for inland waters coupled with YSI PC fluorescence probe. Song K; Li L; Tedesco L; Clercin N; Hall B; Li S; Shi K; Liu D; Sun Y Environ Sci Pollut Res Int; 2013 Aug; 20(8):5330-40. PubMed ID: 23397212 [TBL] [Abstract][Full Text] [Related]
10. Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria. Stumpf RP; Davis TW; Wynne TT; Graham JL; Loftin KA; Johengen TH; Gossiaux D; Palladino D; Burtner A Harmful Algae; 2016 Apr; 54():160-173. PubMed ID: 28073474 [TBL] [Abstract][Full Text] [Related]
11. A phycocyanin probe as a tool for monitoring cyanobacteria in freshwater bodies. Brient L; Lengronne M; Bertrand E; Rolland D; Sipel A; Steinmann D; Baudin I; Legeas M; Le Rouzic B; Bormans M J Environ Monit; 2008 Feb; 10(2):248-55. PubMed ID: 18246219 [TBL] [Abstract][Full Text] [Related]
12. Chlorophyll-a determinations in mesocosms under varying nutrient and temperature treatments: in-situ fluorescence sensors versus in-vitro measurements. Levi EE; Jeppesen E; Nejstgaard JC; Davidson TA Open Res Eur; 2024; 4():69. PubMed ID: 38915372 [TBL] [Abstract][Full Text] [Related]
13. Improvement of Simonazzi M; Pezzolesi L; Guerrini F; Vanucci S; Graziani G; Vasumini I; Pandolfi A; Servadei I; Pistocchi R Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36360953 [TBL] [Abstract][Full Text] [Related]
14. Determining the Spectral Requirements for Cyanobacteria Detection for the CyanoSat Hyperspectral Imager with Machine Learning. Matthews MW; Kravitz J; Pease J; Gensemer S Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765856 [TBL] [Abstract][Full Text] [Related]
15. Estimation of cyanobacteria biovolume in water reservoirs by MERIS sensor. Medina-Cobo M; Domínguez JA; Quesada A; de Hoyos C Water Res; 2014 Oct; 63():10-20. PubMed ID: 24971813 [TBL] [Abstract][Full Text] [Related]
16. A suggested climate service for cyanobacteria blooms in the Baltic Sea - Comparing three monitoring methods. Karlson B; Arneborg L; Johansson J; Linders J; Liu Y; Olofsson M Harmful Algae; 2022 Oct; 118():102291. PubMed ID: 36195413 [TBL] [Abstract][Full Text] [Related]
17. Use of in vivo phycocyanin fluorescence to monitor potential microcystin-producing cyanobacterial biovolume in a drinking water source. McQuaid N; Zamyadi A; Prévost M; Bird DF; Dorner S J Environ Monit; 2011 Feb; 13(2):455-63. PubMed ID: 21157617 [TBL] [Abstract][Full Text] [Related]
18. Assessment of in situ fluorometry to measure cyanobacterial presence in water bodies with diverse cyanobacterial populations. Bowling LC; Zamyadi A; Henderson RK Water Res; 2016 Nov; 105():22-33. PubMed ID: 27592302 [TBL] [Abstract][Full Text] [Related]
19. Study of the growth and biochemical composition of 20 species of cyanobacteria cultured in cylindrical photobioreactors. Baracho DH; Lombardi AT Microb Cell Fact; 2023 Feb; 22(1):36. PubMed ID: 36823519 [TBL] [Abstract][Full Text] [Related]
20. Predicting cyanobacterial biovolumes from phycocyanin fluorescence using a handheld fluorometer in the field. Thomson-Laing G; Puddick J; Wood SA Harmful Algae; 2020 Jul; 97():101869. PubMed ID: 32732055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]