These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35121778)

  • 1. Numerical modeling and analysis of coaxial electrohydrodynamic jet printing.
    Wang D; Abbas Z; Lu L; Zhao X; Xu P; Zhao K; Yin P; Liang J
    Sci Rep; 2022 Feb; 12(1):1924. PubMed ID: 35121778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale coaxial focused electrohydrodynamic jet printing.
    Wang D; Zhao X; Lin Y; Liang J; Ren T; Liu Z; Li J
    Nanoscale; 2018 May; 10(21):9867-9879. PubMed ID: 29664090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation and Printing of Microdroplets Using Straight Electrode-Based Electrohydrodynamic Jet for Flexible Substrate.
    Wang D; Abbas Z; Lu L; Liu C; Zhang J; Pu C; Li Y; Yin P; Zhang X; Liang J
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of Cone-Jet and Micro-Drip Regimes and Printing of Micro-Scale Patterns on PET Substrate.
    Wang D; Abbas Z; Lu L; Liang S; Zhao X; Xu P; Zhao K; Suo L; Cui Y; Yin P; Tang B; Xie J; Yang Y; Liang J
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation and Validation of Droplet Generation Process for Revealing Three Design Constraints in Electrohydrodynamic Jet Printing.
    Pan Y; Zeng L
    Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30699909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and Characterization of a Microscale Piezoelectric Vibrator Based on Electrohydrodynamic Jet Printed PZT Thick Film.
    Wang D; Zhao K; Yuan Y; Wang Z; Zong H; Zhang X; Liang J
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34066454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-scale additive direct-writing fabrication of micro/nano lens arrays by electrohydrodynamic jet printing.
    Zhou P; Yu H; Zou W; Zhong Y; Wang X; Wang Z; Liu L
    Opt Express; 2020 Mar; 28(5):6336-6349. PubMed ID: 32225884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instrument for fine control of drop-on-demand electrohydrodynamic jet printing by current measurement.
    Li K; Wang D; Yi S; Jia H; Qian J; Du Z; Ren T; Liang J; Martinez-Chapa SO; Madou M
    Rev Sci Instrum; 2019 Nov; 90(11):115001. PubMed ID: 31779448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrohydrodynamic jet 3D printing of PCL/PVP composite scaffold for cell culture.
    Li K; Wang D; Zhao K; Song K; Liang J
    Talanta; 2020 May; 211():120750. PubMed ID: 32070610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Study of the Influence of Ink Properties and Process Parameters on Ejection Volume in Electrohydrodynamic Jet Printing.
    Guo L; Duan Y; Huang Y; Yin Z
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-field simulations of electrohydrodynamic jetting for printing nano-to-microscopic constructs.
    Singh SK; Subramanian A
    RSC Adv; 2020 Jun; 10(42):25022-25028. PubMed ID: 35517438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtip focused electrohydrodynamic jet printing with nanoscale resolution.
    Su S; Liang J; Wang Z; Xin W; Li X; Wang D
    Nanoscale; 2020 Dec; 12(48):24450-24462. PubMed ID: 33300927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile and scalable fabrication of Ni cantilever nanoprobes using silicon template and micro-electroforming techniques for nano-tip focused electrohydrodynamic jet printing.
    Hu Y; Su S; Liang J; Xin W; Li X; Wang D
    Nanotechnology; 2021 Mar; 32(10):105301. PubMed ID: 33227721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrohydrodynamic printing process monitoring by microscopic image identification.
    Sun J; Jing L; Fan X; Gao X; Liang YC
    Int J Bioprint; 2019; 5(1):164. PubMed ID: 32923733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Both E-Jet Printing Ejection Cycle Time and Droplet Diameter Based on Random Forest Regression.
    Chen Y; Lao Z; Wang R; Li J; Gai J; You H
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Resolution, Transparent, and Flexible Printing of Polydimethylsiloxane via Electrohydrodynamic Jet Printing for Conductive Electronic Device Applications.
    Hassan RU; Khalil SM; Khan SA; Ali S; Moon J; Cho DH; Byun D
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized coaxial focused electrohydrodynamic jet printing of highly ordered semiconductor sub-microwire arrays for high-performance organic field-effect transistors.
    Lu L; Wang D; Zhao Z; Li Y; Pu C; Xu P; Chen X; Liu C; Liang S; Suo L; Liang J; Cui Y; Guo Y; Liu Y
    Nanoscale; 2023 Jan; 15(4):1880-1889. PubMed ID: 36606492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tip-Viscid Electrohydrodynamic Jet 3D Printing of Composite Osteochondral Scaffold.
    Li K; Wang D; Zhang F; Wang X; Chen H; Yu A; Cui Y; Dong C
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Microscale 3D Printing Based on the Electric-Field-Driven Jet.
    Zhang G; Lan H; Qian L; Zhao J; Wang F
    3D Print Addit Manuf; 2020 Feb; 7(1):37-44. PubMed ID: 36654877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrohydrodynamic jet-printed zinc-tin oxide TFTs and their bias stability.
    Lee YG; Choi WS
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11167-72. PubMed ID: 25000343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.