BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 35121854)

  • 21. Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1.3 Billion Compounds.
    Ton AT; Gentile F; Hsing M; Ban F; Cherkasov A
    Mol Inform; 2020 Aug; 39(8):e2000028. PubMed ID: 32162456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Applications of the NRGsuite and the Molecular Docking Software FlexAID in Computational Drug Discovery and Design.
    Morency LP; Gaudreault F; Najmanovich R
    Methods Mol Biol; 2018; 1762():367-388. PubMed ID: 29594781
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of Ligand-based Big Data Deep Neural Network Models for Virtual Screening of Large Compound Libraries.
    Xiao T; Qi X; Chen Y; Jiang Y
    Mol Inform; 2018 Nov; 37(11):e1800031. PubMed ID: 29882343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enabling Systemic Identification and Functionality Profiling for Cdc42 Homeostatic Modulators.
    Malasala S; Azimian F; Chen YH; Twiss JL; Boykin C; Akhtar SN; Lu Q
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure-Based Virtual Screening.
    Li Q; Shah S
    Methods Mol Biol; 2017; 1558():111-124. PubMed ID: 28150235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AI-accelerated protein-ligand docking for SARS-CoV-2 is 100-fold faster with no significant change in detection.
    Clyde A; Liu X; Brettin T; Yoo H; Partin A; Babuji Y; Blaiszik B; Mohd-Yusof J; Merzky A; Turilli M; Jha S; Ramanathan A; Stevens R
    Sci Rep; 2023 Feb; 13(1):2105. PubMed ID: 36747041
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correlation of protein binding pocket properties with hits' chemistries used in generation of ultra-large virtual libraries.
    Song RX; Nicklaus MC; Tarasova NI
    J Comput Aided Mol Des; 2024 May; 38(1):22. PubMed ID: 38753096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accelerating Molecular Docking using Machine Learning Methods.
    Bande AY; Baday S
    Mol Inform; 2024 Jun; 43(6):e202300167. PubMed ID: 38850231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient Exploration of Chemical Space with Docking and Deep Learning.
    Yang Y; Yao K; Repasky MP; Leswing K; Abel R; Shoichet BK; Jerome SV
    J Chem Theory Comput; 2021 Nov; 17(11):7106-7119. PubMed ID: 34592101
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lean-Docking: Exploiting Ligands' Predicted Docking Scores to Accelerate Molecular Docking.
    Berenger F; Kumar A; Zhang KYJ; Yamanishi Y
    J Chem Inf Model; 2021 May; 61(5):2341-2352. PubMed ID: 33861591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure-based virtual screening of the nociceptin receptor: hybrid docking and shape-based approaches for improved hit identification.
    Daga PR; Polgar WE; Zaveri NT
    J Chem Inf Model; 2014 Oct; 54(10):2732-43. PubMed ID: 25148595
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Receptor-based virtual screening protocol for drug discovery.
    Cerqueira NM; Gesto D; Oliveira EF; Santos-Martins D; Brás NF; Sousa SF; Fernandes PA; Ramos MJ
    Arch Biochem Biophys; 2015 Sep; 582():56-67. PubMed ID: 26045247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. dockECR: Open consensus docking and ranking protocol for virtual screening of small molecules.
    Ochoa R; Palacio-Rodriguez K; Clemente CM; Adler NS
    J Mol Graph Model; 2021 Dec; 109():108023. PubMed ID: 34555725
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accounting of Receptor Flexibility in Ultra-Large Virtual Screens with VirtualFlow Using a Grey Wolf Optimization Method.
    Gorgulla C; Fackeldey K; Wagner G; Arthanari H
    Supercomput Front Innov; 2020 Nov; 7(3):4-12. PubMed ID: 34693068
    [TBL] [Abstract][Full Text] [Related]  

  • 36. VSPrep: A General KNIME Workflow for the Preparation of Molecules for Virtual Screening.
    Gally JM; Bourg S; Do QT; Aci-Sèche S; Bonnet P
    Mol Inform; 2017 Oct; 36(10):. PubMed ID: 28586180
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DockBench: An Integrated Informatic Platform Bridging the Gap between the Robust Validation of Docking Protocols and Virtual Screening Simulations.
    Cuzzolin A; Sturlese M; Malvacio I; Ciancetta A; Moro S
    Molecules; 2015 May; 20(6):9977-93. PubMed ID: 26035098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Docking Finds GPCR Ligands in Dark Chemical Matter.
    Ballante F; Rudling A; Zeifman A; Luttens A; Vo DD; Irwin JJ; Kihlberg J; Brea J; Loza MI; Carlsson J
    J Med Chem; 2020 Jan; 63(2):613-620. PubMed ID: 31846328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enrichment of virtual hits by progressive shape-matching and docking.
    Choi J; He N; Kim N; Yoon S
    J Mol Graph Model; 2012 Feb; 32():82-8. PubMed ID: 22088763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational protein-ligand docking and virtual drug screening with the AutoDock suite.
    Forli S; Huey R; Pique ME; Sanner MF; Goodsell DS; Olson AJ
    Nat Protoc; 2016 May; 11(5):905-19. PubMed ID: 27077332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.