These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 35121854)

  • 41. Identification of Inhibitors for the Lutheran Blood Group Glycoprotein - Laminin 511/521 Interaction by Molecular Modelling and Simulation Techniques.
    Madeleine N; Gardebien F
    Curr Comput Aided Drug Des; 2018; 14(3):253-268. PubMed ID: 27439722
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Protein Preparation Automatic Protocol for High-Throughput Inverse Virtual Screening: Accelerating the Target Identification by Computational Methods.
    De Vita S; Lauro G; Ruggiero D; Terracciano S; Riccio R; Bifulco G
    J Chem Inf Model; 2019 Nov; 59(11):4678-4690. PubMed ID: 31593460
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Negative Image-Based Screening: Rigid Docking Using Cavity Information.
    Postila PA; Kurkinen ST; Pentikäinen OT
    Methods Mol Biol; 2021; 2266():125-140. PubMed ID: 33759124
    [TBL] [Abstract][Full Text] [Related]  

  • 44. PrepFlow: A Toolkit for Chemical Library Preparation and Management for Virtual Screening.
    Sisquellas M; Cecchini M
    Mol Inform; 2021 Dec; 40(12):e2100139. PubMed ID: 34448369
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Pan-Canadian Chemical Library: A Mechanism to Open Academic Chemistry to High-Throughput Virtual Screening.
    Bedart C; Shimokura G; West FG; Wood TE; Batey RA; Irwin JJ; Schapira M
    Sci Data; 2024 Jun; 11(1):597. PubMed ID: 38844472
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Novel Scoring Based Distributed Protein Docking Application to Improve Enrichment.
    Pradeep P; Struble C; Neumann T; Sem DS; Merrill SJ
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1464-9. PubMed ID: 26671816
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Guided structure-based ligand identification and design via artificial intelligence modeling.
    Di Filippo JI; Cavasotto CN
    Expert Opin Drug Discov; 2022 Jan; 17(1):71-78. PubMed ID: 34544293
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Virtual fragment screening: an exploration of various docking and scoring protocols for fragments using Glide.
    Kawatkar S; Wang H; Czerminski R; Joseph-McCarthy D
    J Comput Aided Mol Des; 2009 Aug; 23(8):527-39. PubMed ID: 19495993
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The potential role of in silico approaches to identify novel bioactive molecules from natural resources.
    Olğaç A; Orhan IE; Banoglu E
    Future Med Chem; 2017 Sep; 9(14):1665-1686. PubMed ID: 28841048
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Search for β2 adrenergic receptor ligands by virtual screening via grid computing and investigation of binding modes by docking and molecular dynamics simulations.
    Bai Q; Shao Y; Pan D; Zhang Y; Liu H; Yao X
    PLoS One; 2014; 9(9):e107837. PubMed ID: 25229694
    [TBL] [Abstract][Full Text] [Related]  

  • 51. warpDOCK: Large-Scale Virtual Drug Discovery Using Cloud Infrastructure.
    McDougal DP; Rajapaksha H; Pederick JL; Bruning JB
    ACS Omega; 2023 Aug; 8(32):29143-29149. PubMed ID: 37599921
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets.
    Feinstein WP; Brylinski M
    J Cheminform; 2015; 7():18. PubMed ID: 26082804
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SEABED: Small molEcule activity scanner weB servicE baseD.
    Fenollosa C; Otón M; Andrio P; Cortés J; Orozco M; Goñi JR
    Bioinformatics; 2015 Mar; 31(5):773-5. PubMed ID: 25348211
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Accelerating high-throughput virtual screening through molecular pool-based active learning.
    Graff DE; Shakhnovich EI; Coley CW
    Chem Sci; 2021 Apr; 12(22):7866-7881. PubMed ID: 34168840
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Machine Learning Boosted Docking (HASTEN): An Open-source Tool To Accelerate Structure-based Virtual Screening Campaigns.
    Kalliokoski T
    Mol Inform; 2021 Sep; 40(9):e2100089. PubMed ID: 34060239
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Panel docking of small-molecule libraries - Prospects to improve efficiency of lead compound discovery.
    Sarnpitak P; Mujumdar P; Taylor P; Cross M; Coster MJ; Gorse AD; Krasavin M; Hofmann A
    Biotechnol Adv; 2015 Nov; 33(6 Pt 1):941-7. PubMed ID: 26025037
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessment of fragment docking and scoring with the endothiapepsin model system.
    Herbst C; Endres S; Würz R; Sotriffer C
    Arch Pharm (Weinheim); 2024 Jun; 357(6):e2400061. PubMed ID: 38631672
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dockey: a modern integrated tool for large-scale molecular docking and virtual screening.
    Du L; Geng C; Zeng Q; Huang T; Tang J; Chu Y; Zhao K
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36764832
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Small-molecule library screening by docking with PyRx.
    Dallakyan S; Olson AJ
    Methods Mol Biol; 2015; 1263():243-50. PubMed ID: 25618350
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular dynamics-based virtual screening: accelerating the drug discovery process by high-performance computing.
    Ge H; Wang Y; Li C; Chen N; Xie Y; Xu M; He Y; Gu X; Wu R; Gu Q; Zeng L; Xu J
    J Chem Inf Model; 2013 Oct; 53(10):2757-64. PubMed ID: 24001302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.