BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 35122265)

  • 1. A back-projection-and-filtering-like (BPF-like) reconstruction method with the deep learning filtration from listmode data in TOF-PET.
    Lv L; Zeng GL; Zan Y; Hong X; Guo M; Chen G; Tao W; Ding W; Huang Q
    Med Phys; 2022 Apr; 49(4):2531-2544. PubMed ID: 35122265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation and validation of time-of-flight PET image reconstruction module for listmode and sinogram projection data in the STIR library.
    Efthimiou N; Emond E; Wadhwa P; Cawthorne C; Tsoumpas C; Thielemans K
    Phys Med Biol; 2019 Jan; 64(3):035004. PubMed ID: 30566915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based image reconstruction for TOF PET with DIRECT data partitioning format.
    Feng T; Yao S; Xi C; Zhao Y; Wang R; Wu S; Li C; Xu B
    Phys Med Biol; 2021 Aug; 66(16):. PubMed ID: 34256356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GapFill-Recon Net: A Cascade Network for simultaneously PET Gap Filling and Image Reconstruction.
    Huang Y; Zhu H; Duan X; Hong X; Sun H; Lv W; Lu L; Feng Q
    Comput Methods Programs Biomed; 2021 Sep; 208():106271. PubMed ID: 34274612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ReconU-Net: a direct PET image reconstruction using U-Net architecture with back projection-induced skip connection.
    Hashimoto F; Ote K
    Phys Med Biol; 2024 May; 69(10):. PubMed ID: 38640921
    [No Abstract]   [Full Text] [Related]  

  • 6. Higher SNR PET image prediction using a deep learning model and MRI image.
    Liu CC; Qi J
    Phys Med Biol; 2019 May; 64(11):115004. PubMed ID: 30844784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast reconstruction of 3D time-of-flight PET data by axial rebinning and transverse mashing.
    Vandenberghe S; Daube-Witherspoon ME; Lewitt RM; Karp JS
    Phys Med Biol; 2006 Mar; 51(6):1603-21. PubMed ID: 16510966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep-learning-based fast TOF-PET image reconstruction using direction information.
    Ote K; Hashimoto F
    Radiol Phys Technol; 2022 Mar; 15(1):72-82. PubMed ID: 35132574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimisation of the event-based TOF filtered back-projection for online imaging in total-body J-PET.
    Shopa RY; Klimaszewski K; Kopka P; Kowalski P; Krzemień W; Raczyński L; Wiślicki W; Chug N; Curceanu C; Czerwiński E; Dadgar M; Dulski K; Gajos A; Hiesmayr BC; Kacprzak K; Kapłon Ł; Kisielewska D; Korcyl G; Krawczyk N; Kubicz E; Niedźwiecki S; Raj J; Sharma S; Shivani ; Stȩpień EŁ; Tayefi F; Moskal P
    Med Image Anal; 2021 Oct; 73():102199. PubMed ID: 34365143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint activity and attenuation estimation for PET with TOF data and single events.
    Feng T; Wang J; Li H
    Phys Med Biol; 2018 Dec; 63(24):245017. PubMed ID: 30523997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dual-domain neural network based on sinogram synthesis for sparse-view CT reconstruction.
    Zhang P; Li K
    Comput Methods Programs Biomed; 2022 Nov; 226():107168. PubMed ID: 36219892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast and memory-efficient reconstruction of sparse Poisson data in listmode with non-smooth priors with application to time-of-flight PET.
    Schramm G; Holler M
    Phys Med Biol; 2022 Jul; 67(15):. PubMed ID: 35594853
    [No Abstract]   [Full Text] [Related]  

  • 13. Analytical properties of time-of-flight PET data.
    Cho S; Ahn S; Li Q; Leahy RM
    Phys Med Biol; 2008 Jun; 53(11):2809-21. PubMed ID: 18460746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time of flight PET reconstruction using nonuniform update for regional recovery uniformity.
    Kim K; Kim D; Yang J; El Fakhri G; Seo Y; Fessler JA; Li Q
    Med Phys; 2019 Feb; 46(2):649-664. PubMed ID: 30508255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal rebinning of time-of-flight PET data.
    Ahn S; Cho S; Li Q; Lin Y; Leahy RM
    IEEE Trans Med Imaging; 2011 Oct; 30(10):1808-18. PubMed ID: 21536530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iterative reconstruction of Fourier-rebinned PET data using sinogram blurring function estimated from point source scans.
    Tohme MS; Qi J
    Med Phys; 2010 Oct; 37(10):5530-40. PubMed ID: 21089788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fourier rebinning of time-of-flight PET data.
    Defrise M; Casey ME; Michel C; Conti M
    Phys Med Biol; 2005 Jun; 50(12):2749-63. PubMed ID: 15930600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilizing deep learning techniques to improve image quality and noise reduction in preclinical low-dose PET images in the sinogram domain.
    Manoj Doss KK; Chen JC
    Med Phys; 2024 Jan; 51(1):209-223. PubMed ID: 37966121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D TOF-PET image reconstruction using total variation regularization.
    Raczyński L; Wiślicki W; Klimaszewski K; Krzemień W; Kopka P; Kowalski P; Shopa RY; Bała M; Chhokar J; Curceanu C; Czerwiński E; Dulski K; Gajewski J; Gajos A; Gorgol M; Del Grande R; Hiesmayr B; Jasińska B; Kacprzak K; Kapłon L; Kisielewska D; Korcyl G; Kozik T; Krawczyk N; Kubicz E; Mohammed M; Niedźwiecki SZ; Pałka M; Pawlik-Niedźwiecka M; Raj J; Rakoczy K; Ruciński A; Sharma S; Shivani S; Silarski M; Skurzok M; Stepień EL; Zgardzińska B; Moskal P
    Phys Med; 2020 Dec; 80():230-242. PubMed ID: 33190079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.