These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35122330)

  • 1. Role of conserved arginine in HadA monooxygenase for 4-nitrophenol and 4-chlorophenol detoxification.
    Pimviriyakul P; Pholert P; Somjitt S; Choowongkomon K
    Proteins; 2022 Jun; 90(6):1291-1302. PubMed ID: 35122330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A complete bioconversion cascade for dehalogenation and denitration by bacterial flavin-dependent enzymes.
    Pimviriyakul P; Chaiyen P
    J Biol Chem; 2018 Nov; 293(48):18525-18539. PubMed ID: 30282807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and stabilization of C4a-hydroperoxy-FAD by the Arg/Asn pair in HadA monooxygenase.
    Pimviriyakul P; Chaiyen P
    FEBS J; 2023 Jan; 290(1):176-195. PubMed ID: 35942637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative dehalogenation and denitration by a flavin-dependent monooxygenase is controlled by substrate deprotonation.
    Pimviriyakul P; Surawatanawong P; Chaiyen P
    Chem Sci; 2018 Oct; 9(38):7468-7482. PubMed ID: 30319747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into a flavin-dependent dehalogenase HadA explain catalysis and substrate inhibition via quadruple π-stacking.
    Pimviriyakul P; Jaruwat A; Chitnumsub P; Chaiyen P
    J Biol Chem; 2021 Aug; 297(2):100952. PubMed ID: 34252455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic Mechanism of the Dechlorinating Flavin-dependent Monooxygenase HadA.
    Pimviriyakul P; Thotsaporn K; Sucharitakul J; Chaiyen P
    J Biol Chem; 2017 Mar; 292(12):4818-4832. PubMed ID: 28159841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a Hotspot Residue for Improving the Thermostability of a Flavin-Dependent Monooxygenase.
    Pongpamorn P; Watthaisong P; Pimviriyakul P; Jaruwat A; Lawan N; Chitnumsub P; Chaiyen P
    Chembiochem; 2019 Dec; 20(24):3020-3031. PubMed ID: 31231908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Component and Two-Component
    Guo Y; Li DF; Zheng J; Xu Y; Zhou NY
    Appl Environ Microbiol; 2021 Oct; 87(22):e0117121. PubMed ID: 34469195
    [No Abstract]   [Full Text] [Related]  

  • 9. A Chemo-Enzymatic Cascade for the Smart Detection of Nitro- and Halogenated Phenols.
    Watthaisong P; Pongpamorn P; Pimviriyakul P; Maenpuen S; Ohmiya Y; Chaiyen P
    Angew Chem Int Ed Engl; 2019 Sep; 58(38):13254-13258. PubMed ID: 31233667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A two-component monooxygenase for continuous denitration and dechlorination of chlorinated 4-nitrophenol in Ensifer sp. strain 22-1.
    Ke Z; Lan M; Yang T; Jia W; Gou Z; Chen K; Jiang J
    Environ Res; 2021 Jul; 198():111216. PubMed ID: 33971135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the Sphingomonas species UG30 pentachlorophenol-4-monooxygenase in p-nitrophenol degradation.
    Leung KT; Campbell S; Gan Y; White DC; Lee H; Trevors JT
    FEMS Microbiol Lett; 1999 Apr; 173(1):247-53. PubMed ID: 10220902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Silico Approach to Support that p-Nitrophenol Monooxygenase from Arthrobacter sp. Strain JS443 Catalyzes the Initial Two Sequential Monooxygenations.
    Kallubai M; Amineni U; Mallavarapu M; Kadiyala V
    Interdiscip Sci; 2015 Jun; 7(2):157-67. PubMed ID: 26272475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Two-Component para-Nitrophenol Monooxygenase Initiates a Novel 2-Chloro-4-Nitrophenol Catabolism Pathway in Rhodococcus imtechensis RKJ300.
    Min J; Zhang JJ; Zhou NY
    Appl Environ Microbiol; 2016 Jan; 82(2):714-23. PubMed ID: 26567304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the upstream 4-chlorophenol biodegradation pathway using a recombinant monooxygenase from Arthrobacter chlorophenolicus A6.
    Cho SY; Kwean OS; Yang JW; Cho W; Kwak S; Park S; Lim Y; Kim HS
    Bioresour Technol; 2017 Dec; 245(Pt B):1800-1807. PubMed ID: 28522197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic biodegradation of phenolic compounds in digested sludge.
    Boyd SA; Shelton DR; Berry D; Tiedje JM
    Appl Environ Microbiol; 1983 Jul; 46(1):50-4. PubMed ID: 6614908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxylation of o-halogenophenol and o-nitrophenol by salicylate hydroxylase.
    Suzuki K; Gomi T; Kaidoh T; Itagaki E
    J Biochem; 1991 Feb; 109(2):348-53. PubMed ID: 1864847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning of a gene cluster involved in the catabolism of p-nitrophenol by Arthrobacter sp. strain JS443 and characterization of the p-nitrophenol monooxygenase.
    Perry LL; Zylstra GJ
    J Bacteriol; 2007 Nov; 189(21):7563-72. PubMed ID: 17720792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Monochlorophenols as enzyme substrates for the preparatory metabolism of phenol in Candida tropicalis yeasts].
    Ivoĭlov VS; Karasevich IuN
    Mikrobiologiia; 1983; 52(6):956-61. PubMed ID: 6669081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of p-nitrophenol 4-monooxygenase PnpA from Pseudomonas putida DLL-E4: The key enzyme involved in p-nitrophenol degradation.
    Chen Q; Huang Y; Duan Y; Li Z; Cui Z; Liu W
    Biochem Biophys Res Commun; 2018 Oct; 504(4):715-720. PubMed ID: 30217456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of two gene clusters involved in the degradation of 4-fluorophenol by Arthrobacter sp. strain IF1.
    Ferreira MI; Iida T; Hasan SA; Nakamura K; Fraaije MW; Janssen DB; Kudo T
    Appl Environ Microbiol; 2009 Dec; 75(24):7767-73. PubMed ID: 19837837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.