These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35122467)

  • 1. Fish-Wearable Data Snooping Platform for Underwater Energy Harvesting and Fish Behavior Monitoring.
    Wang X; Shi Y; Yang P; Tao X; Li S; Lei R; Liu Z; Wang ZL; Chen X
    Small; 2022 Mar; 18(10):e2107232. PubMed ID: 35122467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fish Gelatin Based Triboelectric Nanogenerator for Harvesting Biomechanical Energy and Self-Powered Sensing of Human Physiological Signals.
    Han Y; Han Y; Zhang X; Li L; Zhang C; Liu J; Lu G; Yu HD; Huang W
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16442-16450. PubMed ID: 32172560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triboelectric Patch Based on Maxwell Displacement Current for Human Energy Harvesting and Eye Movement Monitoring.
    Zhu J; Zeng Y; Luo Y; Jie Y; Lan F; Yang J; Wang ZL; Cao X
    ACS Nano; 2022 Aug; 16(8):11884-11891. PubMed ID: 35920687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing.
    Dong K; Wu Z; Deng J; Wang AC; Zou H; Chen C; Hu D; Gu B; Sun B; Wang ZL
    Adv Mater; 2018 Oct; 30(43):e1804944. PubMed ID: 30256476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Eco-friendly Porous Nanocomposite Fabric-Based Triboelectric Nanogenerator for Efficient Energy Harvesting and Motion Sensing.
    Bai Z; Xu Y; Li J; Zhu J; Gao C; Zhang Y; Wang J; Guo J
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42880-42890. PubMed ID: 32847347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UV-Protective, Self-Cleaning, and Antibacterial Nanofiber-Based Triboelectric Nanogenerators for Self-Powered Human Motion Monitoring.
    Jiang Y; Dong K; An J; Liang F; Yi J; Peng X; Ning C; Ye C; Wang ZL
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11205-11214. PubMed ID: 33645227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional Water Drop Energy Harvesting and Human Motion Sensor Based on Flexible Dual-Mode Nanogenerator Incorporated with Polymer Nanotubes.
    Huang LB; Xu W; Zhao C; Zhang YL; Yung KL; Diao D; Fung KH; Hao J
    ACS Appl Mater Interfaces; 2020 May; 12(21):24030-24038. PubMed ID: 32370490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting and as Self-Powered Active Motion Sensors.
    Dong K; Deng J; Zi Y; Wang YC; Xu C; Zou H; Ding W; Dai Y; Gu B; Sun B; Wang ZL
    Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28786510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Tubular Flexible Triboelectric Nanogenerator with a Superhydrophobic Surface for Human Motion Detecting.
    Wang J; Zhao Z; Zeng X; Liu X; Hu Y
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34071134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An airtight-cavity-structural triboelectric nanogenerator-based insole for high performance biomechanical energy harvesting.
    Lin Z; Wu Y; He Q; Sun C; Fan E; Zhou Z; Liu M; Wei W; Yang J
    Nanoscale; 2019 Apr; 11(14):6802-6809. PubMed ID: 30907905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible triboelectric nanogenerator based on polyester conductive cloth for biomechanical energy harvesting and self-powered sensors.
    Zhao J; Wang Y; Song X; Zhou A; Ma Y; Wang X
    Nanoscale; 2021 Nov; 13(43):18363-18373. PubMed ID: 34723308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators.
    Zhao T; Fu Y; Sun C; Zhao X; Jiao C; Du A; Wang Q; Mao Y; Liu B
    Biosens Bioelectron; 2022 Jun; 205():114115. PubMed ID: 35219020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fish Scale for Wearable, Self-Powered TENG.
    Zhao L; Han J; Zhang X; Wang C
    Nanomaterials (Basel); 2024 Mar; 14(5):. PubMed ID: 38470792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stretchable and Wearable Triboelectric Nanogenerator Based on Kinesio Tape for Self-Powered Human Motion Sensing.
    Wang S; He M; Weng B; Gan L; Zhao Y; Li N; Xie Y
    Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30149583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully Fibrous Large-Area Tailorable Triboelectric Nanogenerator Based on Solution Blow Spinning Technology for Energy Harvesting and Self-Powered Sensing.
    Xu H; Tao J; Liu Y; Mo Y; Bao R; Pan C
    Small; 2022 Sep; 18(37):e2202477. PubMed ID: 35948484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators.
    Ryu H; Park HM; Kim MK; Kim B; Myoung HS; Kim TY; Yoon HJ; Kwak SS; Kim J; Hwang TH; Choi EK; Kim SW
    Nat Commun; 2021 Jul; 12(1):4374. PubMed ID: 34272375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A noval transparent triboelectric nanogenerator as electronic skin for real-time breath monitoring.
    Pan J; Sun W; Li X; Hao Y; Bai Y; Nan D
    J Colloid Interface Sci; 2024 Oct; 671():336-343. PubMed ID: 38815370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wearable Triboelectric Nanogenerator with Ground-Coupled Electrode for Biomechanical Energy Harvesting and Sensing.
    Su K; Lin X; Liu Z; Tian Y; Peng Z; Meng B
    Biosensors (Basel); 2023 May; 13(5):. PubMed ID: 37232909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator.
    Su Y; Chen G; Chen C; Gong Q; Xie G; Yao M; Tai H; Jiang Y; Chen J
    Adv Mater; 2021 Sep; 33(35):e2101262. PubMed ID: 34240473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Self-Powered Wearable Sensor for Continuous Wireless Sweat Monitoring.
    Gai Y; Wang E; Liu M; Xie L; Bai Y; Yang Y; Xue J; Qu X; Xi Y; Li L; Luo D; Li Z
    Small Methods; 2022 Oct; 6(10):e2200653. PubMed ID: 36074976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.