These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 35122520)

  • 1. Revisiting horizontal connectivity rules in V1: from like-to-like towards like-to-all.
    Chavane F; Perrinet LU; Rankin J
    Brain Struct Funct; 2022 May; 227(4):1279-1295. PubMed ID: 35122520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic Correlates of Low-Level Perception in V1.
    Gerard-Mercier F; Carelli PV; Pananceau M; Troncoso XG; Frégnac Y
    J Neurosci; 2016 Apr; 36(14):3925-42. PubMed ID: 27053201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lack of patchy horizontal connectivity in primary visual cortex of a mammal without orientation maps.
    Van Hooser SD; Heimel JA; Chung S; Nelson SB
    J Neurosci; 2006 Jul; 26(29):7680-92. PubMed ID: 16855096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circuits for local and global signal integration in primary visual cortex.
    Angelucci A; Levitt JB; Walton EJ; Hupe JM; Bullier J; Lund JS
    J Neurosci; 2002 Oct; 22(19):8633-46. PubMed ID: 12351737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional cell classes and functional architecture in the early visual system of a highly visual rodent.
    Van Hooser SD; Heimel JA; Nelson SB
    Prog Brain Res; 2005; 149():127-45. PubMed ID: 16226581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frontal cortical regions associated with attention connect more strongly to central than peripheral V1.
    Sims SA; Demirayak P; Cedotal S; Visscher KM
    Neuroimage; 2021 Sep; 238():118246. PubMed ID: 34111516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional mapping of horizontal connections in developing ferret visual cortex: experiments and modeling.
    Weliky M; Katz LC
    J Neurosci; 1994 Dec; 14(12):7291-305. PubMed ID: 7996176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous Retinal Waves Can Generate Long-Range Horizontal Connectivity in Visual Cortex.
    Kim J; Song M; Jang J; Paik SB
    J Neurosci; 2020 Aug; 40(34):6584-6599. PubMed ID: 32680939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topography of contextual modulations mediated by short-range interactions in primary visual cortex.
    Das A; Gilbert CD
    Nature; 1999 Jun; 399(6737):655-61. PubMed ID: 10385116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different orientation tuning of near- and far-surround suppression in macaque primary visual cortex mirrors their tuning in human perception.
    Shushruth S; Nurminen L; Bijanzadeh M; Ichida JM; Vanni S; Angelucci A
    J Neurosci; 2013 Jan; 33(1):106-19. PubMed ID: 23283326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinotopic axis specificity and selective clustering of feedback projections from V2 to V1 in the owl monkey.
    Shmuel A; Korman M; Sterkin A; Harel M; Ullman S; Malach R; Grinvald A
    J Neurosci; 2005 Feb; 25(8):2117-31. PubMed ID: 15728852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Anatomically Constrained Model of V1 Simple Cells Predicts the Coexistence of Push-Pull and Broad Inhibition.
    Taylor MM; Contreras D; Destexhe A; Frégnac Y; Antolik J
    J Neurosci; 2021 Sep; 41(37):7797-7812. PubMed ID: 34321313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orientation selectivity in the visual cortex of the nine-banded armadillo.
    Scholl B; Rylee J; Luci JJ; Priebe NJ; Padberg J
    J Neurophysiol; 2017 Mar; 117(3):1395-1406. PubMed ID: 28053246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of local horizontal interactions in cat visual cortex studied by cross-correlation analysis.
    Hata Y; Tsumoto T; Sato H; Hagihara K; Tamura H
    J Neurophysiol; 1993 Jan; 69(1):40-56. PubMed ID: 8381863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constrained inference in sparse coding reproduces contextual effects and predicts laminar neural dynamics.
    Capparelli F; Pawelzik K; Ernst U
    PLoS Comput Biol; 2019 Oct; 15(10):e1007370. PubMed ID: 31581240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specificity of V1-V2 orientation networks in the primate visual cortex.
    Roe AW; Ts'o DY
    Cortex; 2015 Nov; 72():168-178. PubMed ID: 26314798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional synchrony and stimulus selectivity of visual cortical units: Comparison between cats and mice.
    Bachatene L; Bharmauria V; Cattan S; Chanauria N; Etindele-Sosso FA; Molotchnikoff S
    Neuroscience; 2016 Nov; 337():331-338. PubMed ID: 27670902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-based analysis of excitatory lateral connections in the visual cortex.
    Buzás P; Kovács K; Ferecskó AS; Budd JM; Eysel UT; Kisvárday ZF
    J Comp Neurol; 2006 Dec; 499(6):861-81. PubMed ID: 17072837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial Correlation-Based Retinotopically Organized Resting-State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance.
    Dawson DA; Lam J; Lewis LB; Carbonell F; Mendola JD; Shmuel A
    Brain Connect; 2016 Feb; 6(1):57-75. PubMed ID: 26415043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificity of color connectivity between primate V1 and V2.
    Roe AW; Ts'o DY
    J Neurophysiol; 1999 Nov; 82(5):2719-30. PubMed ID: 10561440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.