These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35122893)

  • 41. Parental and preimaginal exposure to methylmercury disrupts locomotor activity and circadian rhythm of adult
    Algarve TD; Assmann CE; Aigaki T; da Cruz IBM
    Drug Chem Toxicol; 2020 May; 43(3):255-265. PubMed ID: 30033776
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Methylmercury-induced neurotoxicity and apoptosis.
    Ceccatelli S; Daré E; Moors M
    Chem Biol Interact; 2010 Nov; 188(2):301-8. PubMed ID: 20399200
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Excitotoxicity and oxidative damages induced by methylmercury in rat cerebral cortex and the protective effects of tea polyphenols.
    Liu W; Xu Z; Deng Y; Xu B; Yang H; Wei Y; Feng S
    Environ Toxicol; 2014 Mar; 29(3):269-83. PubMed ID: 22223486
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Atg5-dependent autophagy plays a protective role against methylmercury-induced cytotoxicity.
    Takanezawa Y; Nakamura R; Sone Y; Uraguchi S; Kiyono M
    Toxicol Lett; 2016 Nov; 262():135-141. PubMed ID: 27667695
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Methylmercury can induce Parkinson's-like neurotoxicity similar to 1-methyl-4- phenylpyridinium: a genomic and proteomic analysis on MN9D dopaminergic neuron cells.
    Shao Y; Figeys D; Ning Z; Mailloux R; Chan HM
    J Toxicol Sci; 2015 Dec; 40(6):817-28. PubMed ID: 26558463
    [TBL] [Abstract][Full Text] [Related]  

  • 46. NF-κB/mTOR-mediated autophagy can regulate diquat-induced apoptosis.
    Park A; Koh HC
    Arch Toxicol; 2019 May; 93(5):1239-1253. PubMed ID: 30848314
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transport and Toxicity of Methylmercury-Cysteine in Cultured BeWo Cells.
    Ganapathy S; Farrell ER; Vaghela S; Joshee L; Ford EG; Uchakina O; McKallip RJ; Barkin JL; Bridges CC
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008820
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Unveiling the neurotoxicity of methylmercury in fish (Diplodus sargus) through a regional morphometric analysis of brain and swimming behavior assessment.
    Puga S; Pereira P; Pinto-Ribeiro F; O'Driscoll NJ; Mann E; Barata M; Pousão-Ferreira P; Canário J; Almeida A; Pacheco M
    Aquat Toxicol; 2016 Nov; 180():320-333. PubMed ID: 27780124
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protective effects of memantine against methylmercury-induced glutamate dyshomeostasis and oxidative stress in rat cerebral cortex.
    Liu W; Xu Z; Deng Y; Xu B; Wei Y; Yang T
    Neurotox Res; 2013 Oct; 24(3):320-37. PubMed ID: 23504438
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Glia and methylmercury neurotoxicity.
    Ni M; Li X; Rocha JB; Farina M; Aschner M
    J Toxicol Environ Health A; 2012; 75(16-17):1091-101. PubMed ID: 22852858
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High susceptibility of neural stem cells to methylmercury toxicity: effects on cell survival and neuronal differentiation.
    Tamm C; Duckworth J; Hermanson O; Ceccatelli S
    J Neurochem; 2006 Apr; 97(1):69-78. PubMed ID: 16524380
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Post-translational modifications in MeHg-induced neurotoxicity.
    Ke T; Gonçalves FM; Gonçalves CL; Dos Santos AA; Rocha JBT; Farina M; Skalny A; Tsatsakis A; Bowman AB; Aschner M
    Biochim Biophys Acta Mol Basis Dis; 2019 Aug; 1865(8):2068-2081. PubMed ID: 30385410
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of methylmercury on spinal cord afferents and efferents-A review.
    Colón-Rodríguez A; Hannon HE; Atchison WD
    Neurotoxicology; 2017 May; 60():308-320. PubMed ID: 28041893
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional MRI approach to developmental methylmercury and polychlorinated biphenyl neurotoxicity.
    White RF; Palumbo CL; Yurgelun-Todd DA; Heaton KJ; Weihe P; Debes F; Grandjean P
    Neurotoxicology; 2011 Dec; 32(6):975-80. PubMed ID: 21545807
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plant components can reduce methylmercury toxication: A mini-review.
    Chang J; Zhou Y; Wang Q; Aschner M; Lu R
    Biochim Biophys Acta Gen Subj; 2019 Dec; 1863(12):129290. PubMed ID: 30849424
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Autophagy and apoptosis in liver injury.
    Wang K
    Cell Cycle; 2015; 14(11):1631-42. PubMed ID: 25927598
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The magnitude of methylmercury-induced cytotoxicity and cell cycle arrest is p53-dependent.
    Gribble EJ; Hong SW; Faustman EM
    Birth Defects Res A Clin Mol Teratol; 2005 Jan; 73(1):29-38. PubMed ID: 15641097
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity.
    Aschner M; Syversen T; Souza DO; Rocha JB; Farina M
    Braz J Med Biol Res; 2007 Mar; 40(3):285-91. PubMed ID: 17334523
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Revisiting Astrocytic Roles in Methylmercury Intoxication.
    Arrifano GP; Augusto-Oliveira M; Souza-Monteiro JR; Macchi BM; Lima RR; Suñol C; do Nascimento JLM; Crespo-Lopez ME
    Mol Neurobiol; 2021 Sep; 58(9):4293-4308. PubMed ID: 33990914
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anesthetic neurotoxicity: Apoptosis and autophagic cell death mediated by calcium dysregulation.
    Yang M; Wei H
    Neurotoxicol Teratol; 2017; 60():59-62. PubMed ID: 27856359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.