BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35123254)

  • 1. Sonoluminescence emission spectra of a 3.6 MHz HIFU in sweeping mode.
    Sleiman N; Hallez L; Pflieger R; Nikitenko SI; Hihn JY
    Ultrason Sonochem; 2022 Feb; 83():105939. PubMed ID: 35123254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of frequency sweep on sonochemiluminescence and sonoluminescence.
    Lee J; Hallez L; Touyeras F; Ashokkumar M; Hihn JY
    Ultrason Sonochem; 2020 Jun; 64():105047. PubMed ID: 32145517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial distribution of sonoluminescence and sonochemiluminescence generated by cavitation bubbles in 1.2 MHz focused ultrasound field.
    Cao H; Wan M; Qiao Y; Zhang S; Li R
    Ultrason Sonochem; 2012 Mar; 19(2):257-63. PubMed ID: 21862375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sonoluminescence characterization of inertial cavitation inside a BSA phantom treated by pulsed HIFU.
    Yin H; Chang N; Xu S; Wan M
    Ultrason Sonochem; 2016 Sep; 32():158-164. PubMed ID: 27150756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-intensity focused ultrasound (HIFU) ablation by the frequency chirps: Enhanced thermal field and cavitation at the focus.
    Wang M; Lei Y; Zhou Y
    Ultrasonics; 2019 Jan; 91():134-149. PubMed ID: 30146323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cavitation mapping by sonochemiluminescence with less bubble displacement induced by acoustic radiation force in a 1.2 MHz HIFU.
    Yin H; Qiao Y; Cao H; Li Z; Wan M
    Ultrason Sonochem; 2014 Mar; 21(2):559-65. PubMed ID: 24409464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial Cavitation Behaviors Induced by Nonlinear Focused Ultrasound Pulses.
    Bawiec CR; Rosnitskiy PB; Peek AT; Maxwell AD; Kreider W; Haar GRT; Sapozhnikov OA; Khokhlova VA; Khokhlova TD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Sep; 68(9):2884-2895. PubMed ID: 33861702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction and suppression of HIFU-induced vessel rupture using passive cavitation detection in an ex vivo model.
    Hoerig CL; Serrone JC; Burgess MT; Zuccarello M; Mast TD
    J Ther Ultrasound; 2014; 2():14. PubMed ID: 25232483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multibubble Sonochemistry and Sonoluminescence at 100 kHz: The Missing Link between Low- and High-Frequency Ultrasound.
    Ji R; Pflieger R; Virot M; Nikitenko SI
    J Phys Chem B; 2018 Jul; 122(27):6989-6994. PubMed ID: 29889527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticle nucleated cavitation for enhanced high intensity focused ultrasound therapy.
    McLaughlan JR; Cowell DMJ; Freear S
    Phys Med Biol; 2017 Dec; 63(1):015004. PubMed ID: 29098986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Chemical History of a Bubble.
    Suslick KS; Eddingsaas NC; Flannigan DJ; Hopkins SD; Xu H
    Acc Chem Res; 2018 Sep; 51(9):2169-2178. PubMed ID: 29771111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement and quenching of high-intensity focused ultrasound cavitation activity via short frequency sweep gaps.
    Hallez L; Lee J; Touyeras F; Nevers A; Ashokkumar M; Hihn JY
    Ultrason Sonochem; 2016 Mar; 29():194-7. PubMed ID: 26584998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of sub-atmospheric pressure and dissolved oxygen concentration on lesions generated in ex vivo tissues by high intensity focused ultrasound.
    He M; Zhong Z; Zeng D; Gong X; Wang Z; Li F
    Biomed Eng Online; 2021 Sep; 20(1):91. PubMed ID: 34526014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sonoluminescence and acoustic emission spectra at different stages of cavitation zone development.
    Dezhkunov NV; Francescutto A; Serpe L; Canaparo R; Cravotto G
    Ultrason Sonochem; 2018 Jan; 40(Pt B):104-109. PubMed ID: 28434879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic changes of integrated backscatter, attenuation coefficient and bubble activities during high-intensity focused ultrasound (HIFU) treatment.
    Zhang S; Wan M; Zhong H; Xu C; Liao Z; Liu H; Wang S
    Ultrasound Med Biol; 2009 Nov; 35(11):1828-44. PubMed ID: 19716225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards an understanding and control of cavitation activity in 1 MHz ultrasound fields.
    Hauptmann M; Struyf H; Mertens P; Heyns M; De Gendt S; Glorieux C; Brems S
    Ultrason Sonochem; 2013 Jan; 20(1):77-88. PubMed ID: 22705075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive cavitation detection during pulsed HIFU exposures of ex vivo tissues and in vivo mouse pancreatic tumors.
    Li T; Chen H; Khokhlova T; Wang YN; Kreider W; He X; Hwang JH
    Ultrasound Med Biol; 2014 Jul; 40(7):1523-34. PubMed ID: 24613635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive spatial mapping of inertial cavitation during HIFU exposure.
    Gyöngy M; Coussios CC
    IEEE Trans Biomed Eng; 2010 Jan; 57(1):48-56. PubMed ID: 19628450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disparities between sonoluminescence, sonochemiluminescence and dosimetry with frequency variation under flow.
    Wood RJ; Lee J; Bussemaker MJ
    Ultrason Sonochem; 2019 Nov; 58():104645. PubMed ID: 31450333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A real-time controller for sustaining thermally relevant acoustic cavitation during ultrasound therapy.
    Hockham N; Coussios CC; Arora M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2685-94. PubMed ID: 21156364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.