These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 35123403)
1. Genetic architecture of salt tolerance in a Multi-Parent Advanced Generation Inter-Cross (MAGIC) cowpea population. Ravelombola W; Shi A; Huynh BL; Qin J; Xiong H; Manley A; Dong L; Olaoye D; Bhattarai G; Zia B; Alshaya H; Alatawi I BMC Genomics; 2022 Feb; 23(1):100. PubMed ID: 35123403 [TBL] [Abstract][Full Text] [Related]
2. Genetic Architecture of Salt Tolerance in Cowpea ( Ravelombola W; Dong L; Barickman TC; Xiong H; Manley A; Cason J; Pham H; Zia B; Mou B; Shi A Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894961 [TBL] [Abstract][Full Text] [Related]
3. Association analysis of salt tolerance in cowpea (Vigna unguiculata (L.) Walp) at germination and seedling stages. Ravelombola W; Shi A; Weng Y; Mou B; Motes D; Clark J; Chen P; Srivastava V; Qin J; Dong L; Yang W; Bhattarai G; Sugihara Y Theor Appl Genet; 2018 Jan; 131(1):79-91. PubMed ID: 28948303 [TBL] [Abstract][Full Text] [Related]
4. Loci discovery, network-guided approach, and genomic prediction for drought tolerance index in a multi-parent advanced generation intercross (MAGIC) cowpea population. Ravelombola W; Shi A; Huynh BL Hortic Res; 2021 Feb; 8(1):24. PubMed ID: 33518704 [TBL] [Abstract][Full Text] [Related]
5. A multi-parent advanced generation inter-cross (MAGIC) population for genetic analysis and improvement of cowpea (Vigna unguiculata L. Walp.). Huynh BL; Ehlers JD; Huang BE; Muñoz-Amatriaín M; Lonardi S; Santos JRP; Ndeve A; Batieno BJ; Boukar O; Cisse N; Drabo I; Fatokun C; Kusi F; Agyare RY; Guo YN; Herniter I; Lo S; Wanamaker SI; Xu S; Close TJ; Roberts PA Plant J; 2018 Mar; 93(6):1129-1142. PubMed ID: 29356213 [TBL] [Abstract][Full Text] [Related]
6. GWAS reveals consistent QTL for drought and salt tolerance in a MAGIC population of 550 lines derived from intermating of 11 Upland cotton (Gossypium hirsutum) parents. Abdelraheem A; Thyssen GN; Fang DD; Jenkins JN; McCarty JC; Wedegaertner T; Zhang J Mol Genet Genomics; 2021 Jan; 296(1):119-129. PubMed ID: 33051724 [TBL] [Abstract][Full Text] [Related]
7. Genetic Loci Associated with Salt Tolerance in Advanced Breeding Populations of Tetraploid Alfalfa Using Genome-Wide Association Studies. Liu XP; Hawkins C; Peel MD; Yu LX Plant Genome; 2019 Mar; 12(1):. PubMed ID: 30951087 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide association analysis of salt tolerance QTLs with SNP markers in maize (Zea mays L.). Xie Y; Feng Y; Chen Q; Zhao F; Zhou S; Ding Y; Song X; Li P; Wang B Genes Genomics; 2019 Oct; 41(10):1135-1145. PubMed ID: 31243730 [TBL] [Abstract][Full Text] [Related]
9. Genome-Wide Association and Prediction of Traits Related to Salt Tolerance in Autotetraploid Alfalfa ( Medina CA; Hawkins C; Liu XP; Peel M; Yu LX Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32397526 [TBL] [Abstract][Full Text] [Related]
10. Multi-locus genome-wide association studies reveal novel genomic regions associated with vegetative stage salt tolerance in bread wheat (Triticum aestivum L.). Chaurasia S; Singh AK; Songachan LS; Sharma AD; Bhardwaj R; Singh K Genomics; 2020 Nov; 112(6):4608-4621. PubMed ID: 32771624 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide association study and genomic selection for soybean chlorophyll content associated with soybean cyst nematode tolerance. Ravelombola WS; Qin J; Shi A; Nice L; Bao Y; Lorenz A; Orf JH; Young ND; Chen S BMC Genomics; 2019 Nov; 20(1):904. PubMed ID: 31775625 [TBL] [Abstract][Full Text] [Related]
12. Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping. Wassan GM; Khanzada H; Zhou Q; Mason AS; Keerio AA; Khanzada S; Solangi AM; Faheem M; Fu D; He H Mol Genet Genomics; 2021 Mar; 296(2):391-408. PubMed ID: 33464396 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide association study of yield and related traits in common wheat under salt-stress conditions. Hu P; Zheng Q; Luo Q; Teng W; Li H; Li B; Li Z BMC Plant Biol; 2021 Jan; 21(1):27. PubMed ID: 33413113 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome Analysis of Differentially Expressed Genes Associated with Salt Stress in Cowpea ( Kang BH; Kim WJ; Chowdhury S; Moon CY; Kang S; Kim SH; Jo SH; Jun TH; Kim KD; Ha BK Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902192 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide association study of salt tolerance at the seed germination stage in lettuce. Das MK; Park S; Adhikari ND; Mou B PLoS One; 2024; 19(10):e0308818. PubMed ID: 39423209 [TBL] [Abstract][Full Text] [Related]
16. Identification of salt-tolerant cowpea genotypes using ISSR markers and proteome analysis. Mini ML; Sathya M; Essa MM; Al-Sadi AM; Jayachandran KS; Anusuyadevi M Front Biosci (Elite Ed); 2019 Jun; 11(1):130-149. PubMed ID: 31136969 [TBL] [Abstract][Full Text] [Related]
17. Screening of cowpea (Vigna unguiculata (L.) Walp.) genotypes for waterlogging tolerance using morpho-physiological traits at early growth stage. Olorunwa OJ; Adhikari B; Shi A; Barickman TC Plant Sci; 2022 Feb; 315():111136. PubMed ID: 35067306 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide association analysis reveals genetic variations and candidate genes associated with salt tolerance related traits in Gossypium hirsutum. Xu P; Guo Q; Meng S; Zhang X; Xu Z; Guo W; Shen X BMC Genomics; 2021 Jan; 22(1):26. PubMed ID: 33407102 [TBL] [Abstract][Full Text] [Related]