These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35123750)

  • 1. Development and in vitro assessment of a bi-layered chitosan-nano-hydroxyapatite osteochondral scaffold.
    Pitrolino KA; Felfel RM; Pellizzeri LM; McLaren J; Popov AA; Sottile V; Scotchford CA; Scammell BE; Roberts GAF; Grant DM
    Carbohydr Polym; 2022 Apr; 282():119126. PubMed ID: 35123750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteochondral repair using scaffolds with gradient pore sizes constructed with silk fibroin, chitosan, and nano-hydroxyapatite.
    Xiao H; Huang W; Xiong K; Ruan S; Yuan C; Mo G; Tian R; Zhou S; She R; Ye P; Liu B; Deng J
    Int J Nanomedicine; 2019; 14():2011-2027. PubMed ID: 30962685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Preparation and
    Li J; Zhang X; Guo Q; Zhang J; Cao Y; Zhang X; Huang J; Wang Q; Liu X; Hao C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Apr; 32(4):434-440. PubMed ID: 29806301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
    Maji K; Dasgupta S; Kundu B; Bissoyi A
    J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic process enhancement on chitosan/gelatin/nano-hydroxyapatite-bone derived multilayer scaffold for osteochondral tissue repair.
    Hu X; Zheng S; Zhang R; Wang Y; Jiao Z; Li W; Nie Y; Liu T; Song K
    Biomater Adv; 2022 Feb; 133():112662. PubMed ID: 35074237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chondrogenic and osteogenic differentiations of human bone marrow-derived mesenchymal stem cells on a nanofibrous scaffold with designed pore network.
    Hu J; Feng K; Liu X; Ma PX
    Biomaterials; 2009 Oct; 30(28):5061-7. PubMed ID: 19564041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds.
    Castro NJ; O'Brien J; Zhang LG
    Nanoscale; 2015 Sep; 7(33):14010-22. PubMed ID: 26234364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds.
    Zhou J; Xu C; Wu G; Cao X; Zhang L; Zhai Z; Zheng Z; Chen X; Wang Y
    Acta Biomater; 2011 Nov; 7(11):3999-4006. PubMed ID: 21757035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical response of porous scaffolds for cartilage engineering.
    Jancár J; Slovíková A; Amler E; Krupa P; Kecová H; Plánka L; Gál P; Necas A
    Physiol Res; 2007; 56 Suppl 1():S17-S25. PubMed ID: 17552899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits.
    Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM
    Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous Chitosan/Nano-Hydroxyapatite Composite Scaffolds Incorporating Simvastatin-Loaded PLGA Microspheres for Bone Repair.
    Li Y; Zhang Z; Zhang Z
    Cells Tissues Organs; 2018; 205(1):20-31. PubMed ID: 29393155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of in vitro and in vivo osteogenic differentiation of nano-hydroxyapatite/chitosan/poly(lactide-co-glycolide) scaffolds with human umbilical cord mesenchymal stem cells.
    Wang F; Zhang YC; Zhou H; Guo YC; Su XX
    J Biomed Mater Res A; 2014 Mar; 102(3):760-8. PubMed ID: 23564567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sphere-shaped nano-hydroxyapatite/chitosan/gelatin 3D porous scaffolds increase proliferation and osteogenic differentiation of human induced pluripotent stem cells from gingival fibroblasts.
    Ji J; Tong X; Huang X; Wang T; Lin Z; Cao Y; Zhang J; Dong L; Qin H; Hu Q
    Biomed Mater; 2015 Jul; 10(4):045005. PubMed ID: 26154827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanotextured silk fibroin/hydroxyapatite biomimetic bilayer tough structure regulated osteogenic/chondrogenic differentiation of mesenchymal stem cells for osteochondral repair.
    Shang L; Ma B; Wang F; Li J; Shen S; Li X; Liu H; Ge S
    Cell Prolif; 2020 Nov; 53(11):e12917. PubMed ID: 33001510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new bi-layered scaffold for osteochondral tissue regeneration: In vitro and in vivo preclinical investigations.
    Sartori M; Pagani S; Ferrari A; Costa V; Carina V; Figallo E; Maltarello MC; Martini L; Fini M; Giavaresi G
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):101-111. PubMed ID: 27770869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of nanocomposite/nanofibrous functionally graded biomimetic scaffolds for osteochondral tissue regeneration.
    Hejazi F; Bagheri-Khoulenjani S; Olov N; Zeini D; Solouk A; Mirzadeh H
    J Biomed Mater Res A; 2021 Sep; 109(9):1657-1669. PubMed ID: 33687800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of biomimetic gradient multi-layer cell-laden scaffolds for osteochondral integrated repair.
    Li M; Song P; Wang W; Xu Y; Li J; Wu L; Gui X; Zeng Z; Zhou Z; Liu M; Kong Q; Fan Y; Zhang X; Zhou C; Liu L
    J Mater Chem B; 2022 Jun; 10(22):4172-4188. PubMed ID: 35531933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo.
    Dasgupta S; Maji K; Nandi SK
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends.
    Bhardwaj N; Kundu SC
    Biomaterials; 2012 Apr; 33(10):2848-57. PubMed ID: 22261099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.