BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35124146)

  • 1. Functional genomic approaches in acute myeloid leukemia: Insights into disease models and the therapeutic potential of reprogramming.
    Patel SA
    Cancer Lett; 2022 May; 533():215579. PubMed ID: 35124146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reprogramming of Acute Myeloid Leukemia Patients Cells: Harboring Cancer Mutations Requires Targeting of AML Hierarchy.
    Golubeva D; Porras DP; Doyle M; Reid JC; Tanasijevic B; Boyd AL; Vojnits K; Elrafie A; Qiao A; Bhatia M
    Stem Cells Transl Med; 2023 Jun; 12(6):334-354. PubMed ID: 37226319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular Reprogramming Allows Generation of Autologous Hematopoietic Progenitors From AML Patients That Are Devoid of Patient-Specific Genomic Aberrations.
    Salci KR; Lee JH; Laronde S; Dingwall S; Kushwah R; Fiebig-Comyn A; Leber B; Foley R; Dal Cin A; Bhatia M
    Stem Cells; 2015 Jun; 33(6):1839-49. PubMed ID: 25764124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brief Report: Human Acute Myeloid Leukemia Reprogramming to Pluripotency Is a Rare Event and Selects for Patient Hematopoietic Cells Devoid of Leukemic Mutations.
    Lee JH; Salci KR; Reid JC; Orlando L; Tanasijevic B; Shapovalova Z; Bhatia M
    Stem Cells; 2017 Sep; 35(9):2095-2102. PubMed ID: 28758276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in the application of induced pluripotent stem cell technology to the study of myeloid malignancies.
    Tatwavedi D; Pellagatti A; Boultwood J
    Adv Biol Regul; 2024 Jan; 91():100993. PubMed ID: 37827894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling leukemia with pediatric acute leukemia patient-derived iPSCs.
    Li T; Zhang Y; Li Y; Wang X; Bao W; Huang J; Ma Y; Li S; Wang S; Yang Y; Liu Y; Gao Y; Feng H; Li Y
    Stem Cell Res; 2021 Jul; 54():102404. PubMed ID: 34111697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential CRISPR gene editing in human iPSCs charts the clonal evolution of myeloid leukemia and identifies early disease targets.
    Wang T; Pine AR; Kotini AG; Yuan H; Zamparo L; Starczynowski DT; Leslie C; Papapetrou EP
    Cell Stem Cell; 2021 Jun; 28(6):1074-1089.e7. PubMed ID: 33571445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studying clonal evolution of myeloid malignancies using induced pluripotent stem cells.
    Doulatov S; Papapetrou EP
    Curr Opin Hematol; 2021 Jan; 28(1):50-56. PubMed ID: 33264225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human AML-iPSCs Reacquire Leukemic Properties after Differentiation and Model Clonal Variation of Disease.
    Chao MP; Gentles AJ; Chatterjee S; Lan F; Reinisch A; Corces MR; Xavy S; Shen J; Haag D; Chanda S; Sinha R; Morganti RM; Nishimura T; Ameen M; Wu H; Wernig M; Wu JC; Majeti R
    Cell Stem Cell; 2017 Mar; 20(3):329-344.e7. PubMed ID: 28089908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clonal evolution of acute myeloid leukemia highlighted by latest genome sequencing studies.
    Zhang X; Lv D; Zhang Y; Liu Q; Li Z
    Oncotarget; 2016 Sep; 7(36):58586-58594. PubMed ID: 27474172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute myeloid leukaemia: a paradigm for the clonal evolution of cancer?
    Grove CS; Vassiliou GS
    Dis Model Mech; 2014 Aug; 7(8):941-51. PubMed ID: 25056697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetics of myeloid malignancies: pathogenetic and clinical implications.
    Fröhling S; Scholl C; Gilliland DG; Levine RL
    J Clin Oncol; 2005 Sep; 23(26):6285-95. PubMed ID: 16155011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clonal evolution of preleukemic hematopoietic stem cells in acute myeloid leukemia.
    Sykes SM; Kokkaliaris KD; Milsom MD; Levine RL; Majeti R
    Exp Hematol; 2015 Dec; 43(12):989-92. PubMed ID: 26455528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Reprogramming technology reveals genetic and functional diversity of subclones in myelodysplastic syndromes].
    Chonabayashi K; Yoshida Y; Takaori-Kondo A
    Rinsho Ketsueki; 2017; 58(7):787-791. PubMed ID: 28781275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathophysiology of Acute Myeloid Leukemia.
    Wachter F; Pikman Y
    Acta Haematol; 2024; 147(2):229-246. PubMed ID: 38228114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Acute myeloid leukemia: molecular pathogenesis and new therapeutic strategies].
    Goyama S
    Rinsho Ketsueki; 2016 Feb; 57(2):118-28. PubMed ID: 26935629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copy-number analysis identified new prognostic marker in acute myeloid leukemia.
    Nibourel O; Guihard S; Roumier C; Pottier N; Terre C; Paquet A; Peyrouze P; Geffroy S; Quentin S; Alberdi A; Abdelali RB; Renneville A; Demay C; Celli-Lebras K; Barbry P; Quesnel B; Castaigne S; Dombret H; Soulier J; Preudhomme C; Cheok MH
    Leukemia; 2017 Mar; 31(3):555-564. PubMed ID: 27686867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-scale drop-out screens to identify cancer cell vulnerabilities in AML.
    Basheer FT; Vassiliou GS
    Curr Opin Genet Dev; 2019 Feb; 54():83-87. PubMed ID: 31063922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Acute myeloid leukemia stem cells from genomic and immunological perspectives].
    Goyama S
    Rinsho Ketsueki; 2020; 61(9):1130-1137. PubMed ID: 33162508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated genomic analyses identify WEE1 as a critical mediator of cell fate and a novel therapeutic target in acute myeloid leukemia.
    Porter CC; Kim J; Fosmire S; Gearheart CM; van Linden A; Baturin D; Zaberezhnyy V; Patel PR; Gao D; Tan AC; DeGregori J
    Leukemia; 2012 Jun; 26(6):1266-76. PubMed ID: 22289989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.