These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 35124439)
1. Meta-learning with implicit gradients in a few-shot setting for medical image segmentation. Khadka R; Jha D; Hicks S; Thambawita V; Riegler MA; Ali S; Halvorsen P Comput Biol Med; 2022 Apr; 143():105227. PubMed ID: 35124439 [TBL] [Abstract][Full Text] [Related]
2. Few-Shot Learning for Medical Image Segmentation Using 3D U-Net and Model-Agnostic Meta-Learning (MAML). Alsaleh AM; Albalawi E; Algosaibi A; Albakheet SS; Khan SB Diagnostics (Basel); 2024 Jun; 14(12):. PubMed ID: 38928629 [TBL] [Abstract][Full Text] [Related]
3. Generalizing Deep Learning for Medical Image Segmentation to Unseen Domains via Deep Stacked Transformation. Zhang L; Wang X; Yang D; Sanford T; Harmon S; Turkbey B; Wood BJ; Roth H; Myronenko A; Xu D; Xu Z IEEE Trans Med Imaging; 2020 Jul; 39(7):2531-2540. PubMed ID: 32070947 [TBL] [Abstract][Full Text] [Related]
4. Domain Adaptation for Medical Image Segmentation: A Meta-Learning Method. Zhang P; Li J; Wang Y; Pan J J Imaging; 2021 Feb; 7(2):. PubMed ID: 34460630 [TBL] [Abstract][Full Text] [Related]
5. Interactive Few-Shot Learning: Limited Supervision, Better Medical Image Segmentation. Feng R; Zheng X; Gao T; Chen J; Wang W; Chen DZ; Wu J IEEE Trans Med Imaging; 2021 Oct; 40(10):2575-2588. PubMed ID: 33606628 [TBL] [Abstract][Full Text] [Related]
6. A few-shot disease diagnosis decision making model based on meta-learning for general practice. Liu Q; Tian Y; Zhou T; Lyu K; Xin R; Shang Y; Liu Y; Ren J; Li J Artif Intell Med; 2024 Jan; 147():102718. PubMed ID: 38184346 [TBL] [Abstract][Full Text] [Related]
7. Self-Supervised Learning for Few-Shot Medical Image Segmentation. Ouyang C; Biffi C; Chen C; Kart T; Qiu H; Rueckert D IEEE Trans Med Imaging; 2022 Jul; 41(7):1837-1848. PubMed ID: 35139014 [TBL] [Abstract][Full Text] [Related]
8. Enhancing Medical Imaging Segmentation with GB-SAM: A Novel Approach to Tissue Segmentation Using Granular Box Prompts. Villanueva-Miranda I; Rong R; Quan P; Wen Z; Zhan X; Yang DM; Chi Z; Xie Y; Xiao G Cancers (Basel); 2024 Jun; 16(13):. PubMed ID: 39001452 [TBL] [Abstract][Full Text] [Related]
9. [A meta-learning based method for segmentation of few-shot magnetic resonance images]. Chen X; Fu Z; Yao Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Apr; 40(2):193-201. PubMed ID: 37139748 [TBL] [Abstract][Full Text] [Related]
10. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation. Chaitanya K; Erdil E; Karani N; Konukoglu E Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649 [TBL] [Abstract][Full Text] [Related]
11. Few-Shot Learning by a Cascaded Framework With Shape-Constrained Pseudo Label Assessment for Whole Heart Segmentation. Wang W; Xia Q; Hu Z; Yan Z; Li Z; Wu Y; Huang N; Gao Y; Metaxas D; Zhang S IEEE Trans Med Imaging; 2021 Oct; 40(10):2629-2641. PubMed ID: 33471751 [TBL] [Abstract][Full Text] [Related]
12. 'Squeeze & excite' guided few-shot segmentation of volumetric images. Guha Roy A; Siddiqui S; Pölsterl S; Navab N; Wachinger C Med Image Anal; 2020 Jan; 59():101587. PubMed ID: 31630012 [TBL] [Abstract][Full Text] [Related]
13. Learning what and where to segment: A new perspective on medical image few-shot segmentation. Feng Y; Wang Y; Li H; Qu M; Yang J Med Image Anal; 2023 Jul; 87():102834. PubMed ID: 37207524 [TBL] [Abstract][Full Text] [Related]
14. A Self-Supervised Few-Shot Semantic Segmentation Method Based on Multi-Task Learning and Dense Attention Computation. Yi K; Wang W; Zhang Y Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39124022 [TBL] [Abstract][Full Text] [Related]
15. Bidirectional meta-Kronecker factored optimizer and Hausdorff distance loss for few-shot medical image segmentation. Kim Y; Kang D; Mok Y; Kwon S; Paik J Sci Rep; 2023 May; 13(1):8088. PubMed ID: 37208448 [TBL] [Abstract][Full Text] [Related]
16. A transfer learning approach to few-shot segmentation of novel white matter tracts. Lu Q; Liu W; Zhuo Z; Li Y; Duan Y; Yu P; Qu L; Ye C; Liu Y Med Image Anal; 2022 Jul; 79():102454. PubMed ID: 35468555 [TBL] [Abstract][Full Text] [Related]
17. Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation. Xiao Z; Su Y; Deng Z; Zhang W Comput Methods Programs Biomed; 2022 Nov; 226():107099. PubMed ID: 36116398 [TBL] [Abstract][Full Text] [Related]
18. DeepLesionBrain: Towards a broader deep-learning generalization for multiple sclerosis lesion segmentation. Kamraoui RA; Ta VT; Tourdias T; Mansencal B; Manjon JV; Coup P Med Image Anal; 2022 Feb; 76():102312. PubMed ID: 34894571 [TBL] [Abstract][Full Text] [Related]
19. Learning fuzzy clustering for SPECT/CT segmentation via convolutional neural networks. Chen J; Li Y; Luna LP; Chung HW; Rowe SP; Du Y; Solnes LB; Frey EC Med Phys; 2021 Jul; 48(7):3860-3877. PubMed ID: 33905560 [TBL] [Abstract][Full Text] [Related]
20. Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation. Enguehard J; O'Halloran P; Gholipour A IEEE Access; 2019; 7():11093-11104. PubMed ID: 31588387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]