These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 35124479)
1. A framework for the design of a closed-loop gastric pacemaker for treating conduction block. Wang L; Malik A; Roop PS; Cheng LK; Paskaranandavadivel N Comput Methods Programs Biomed; 2022 Apr; 216():106652. PubMed ID: 35124479 [TBL] [Abstract][Full Text] [Related]
2. Design of a closed-loop gastric pacemaker for modulating dysrhythmic conduction patterns via extracellular potentials. Wang L; Malik A; Roop PS; Cheng LK; Paskaranandavadivel N; Ai W Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2504-2507. PubMed ID: 33018515 [TBL] [Abstract][Full Text] [Related]
3. A novel approach for model-based design of gastric pacemakers. Wang L; Malik A; Roop PS; Cheng LK; Paskaranandavadivel N; Ai W Comput Biol Med; 2020 Jan; 116():103576. PubMed ID: 31999552 [TBL] [Abstract][Full Text] [Related]
4. Targeted ablation of gastric pacemaker sites to modulate patterns of bioelectrical slow wave activation and propagation in an anesthetized pig model. Aghababaie Z; Cheng LK; Paskaranandavadivel N; Avci R; Chan CA; Matthee A; Amirapu S; Asirvatham SJ; Farrugia G; Beyder A; O'Grady G; Angeli-Gordon TR Am J Physiol Gastrointest Liver Physiol; 2022 Apr; 322(4):G431-G445. PubMed ID: 35137624 [TBL] [Abstract][Full Text] [Related]
5. A Formal Approach for Scalable Simulation of Gastric ICC Electrophysiology. Wang L; Malik A; Roop PS; Cheng LK; Paskaranandavadivel N IEEE Trans Biomed Eng; 2019 Dec; 66(12):3320-3329. PubMed ID: 30869606 [TBL] [Abstract][Full Text] [Related]
6. Gastric electrical stimulation: an evidence-based analysis. Medical Advisory Secretariat Ont Health Technol Assess Ser; 2006; 6(16):1-79. PubMed ID: 23074486 [TBL] [Abstract][Full Text] [Related]
7. A biophysically based finite-state machine model for analyzing gastric experimental entrainment and pacing recordings. Sathar S; Trew ML; Du P; O'Grady G; Cheng LK Ann Biomed Eng; 2014 Apr; 42(4):858-70. PubMed ID: 24276722 [TBL] [Abstract][Full Text] [Related]
8. Gastric ablation as a novel technique for modulating electrical conduction in the in vivo stomach. Aghababaie Z; Paskaranandavadivel N; Amirapu S; Chan CA; Du P; Asirvatham SJ; Farrugia G; Beyder A; O'Grady G; Cheng LK; Angeli-Gordon TR Am J Physiol Gastrointest Liver Physiol; 2021 Apr; 320(4):G573-G585. PubMed ID: 33470186 [TBL] [Abstract][Full Text] [Related]
10. Network properties of interstitial cells of Cajal affect intestinal pacemaker activity and motor patterns, according to a mathematical model of weakly coupled oscillators. Wei R; Parsons SP; Huizinga JD Exp Physiol; 2017 Mar; 102(3):329-346. PubMed ID: 28036151 [TBL] [Abstract][Full Text] [Related]
11. Determining the efficient inter-electrode distance for high-resolution mapping using a mathematical model of human gastric dysrhythmias. Putney J; O'Grady G; Angeli TR; Paskaranandavadivel N; Cheng LK; Erickson JC; Peng Du Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1448-51. PubMed ID: 26736542 [TBL] [Abstract][Full Text] [Related]
12. A simplified biophysical cell model for gastric slow wave entrainment simulation. Du P; Gao J; O'Grady G; Cheng LK Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6547-50. PubMed ID: 24111242 [TBL] [Abstract][Full Text] [Related]
13. The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in silico modeling. Du P; Hameed A; Angeli TR; Lahr C; Abell TL; Cheng LK; O'Grady G Neurogastroenterol Motil; 2015 Oct; 27(10):1409-22. PubMed ID: 26251163 [TBL] [Abstract][Full Text] [Related]
15. Toward the virtual stomach: progress in multiscale modeling of gastric electrophysiology and motility. Du P; O'Grady G; Gao J; Sathar S; Cheng LK Wiley Interdiscip Rev Syst Biol Med; 2013; 5(4):481-93. PubMed ID: 23463750 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional multi-field modelling of gastric arrhythmias and their effects on antral contractions. Klemm L; Seydewitz R; Siebert T; Böl M Comput Biol Med; 2023 Feb; 153():106488. PubMed ID: 36592609 [TBL] [Abstract][Full Text] [Related]
17. Generation and propagation of gastric slow waves. van Helden DF; Laver DR; Holdsworth J; Imtiaz MS Clin Exp Pharmacol Physiol; 2010 Apr; 37(4):516-24. PubMed ID: 19930430 [TBL] [Abstract][Full Text] [Related]
18. The influence of interstitial cells of Cajal loss and aging on slow wave conduction velocity in the human stomach. Wang TH; Angeli TR; Ishida S; Du P; Gharibans A; Paskaranandavadivel N; Imai Y; Miyagawa T; Abell TL; Farrugia G; Cheng LK; O'Grady G Physiol Rep; 2021 Jan; 8(24):e14659. PubMed ID: 33355992 [TBL] [Abstract][Full Text] [Related]
19. A Multiscale Tridomain Model for Simulating Bioelectric Gastric Pacing. Sathar S; Trew ML; OGrady G; Cheng LK IEEE Trans Biomed Eng; 2015 Nov; 62(11):2685-92. PubMed ID: 26080372 [TBL] [Abstract][Full Text] [Related]
20. High-resolution mapping of gastric slow-wave recovery profiles: biophysical model, methodology, and demonstration of applications. Paskaranandavadivel N; Cheng LK; Du P; Rogers JM; O'Grady G Am J Physiol Gastrointest Liver Physiol; 2017 Sep; 313(3):G265-G276. PubMed ID: 28546283 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]