These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 35124760)
1. Disruption of YCP4 enhances freeze-thaw tolerance in Saccharomyces cerevisiae. Kim HS Biotechnol Lett; 2022 Mar; 44(3):503-511. PubMed ID: 35124760 [TBL] [Abstract][Full Text] [Related]
2. Disruption of RIM15 confers an increased tolerance to heavy metals in Saccharomyces cerevisiae. Kim HS Biotechnol Lett; 2020 Jul; 42(7):1193-1202. PubMed ID: 32248397 [TBL] [Abstract][Full Text] [Related]
3. Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing. Watanabe D; Sekiguchi H; Sugimoto Y; Nagasawa A; Kida N; Takagi H Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29625985 [TBL] [Abstract][Full Text] [Related]
4. Insufficiency of copper ion homeostasis causes freeze-thaw injury of yeast cells as revealed by indirect gene expression analysis. Takahashi S; Ando A; Takagi H; Shima J Appl Environ Microbiol; 2009 Nov; 75(21):6706-11. PubMed ID: 19749072 [TBL] [Abstract][Full Text] [Related]
5. The cytoplasmic Cu,Zn superoxide dismutase of saccharomyces cerevisiae is required for resistance to freeze-thaw stress. Generation of free radicals during freezing and thawing. Park JI; Grant CM; Davies MJ; Dawes IW J Biol Chem; 1998 Sep; 273(36):22921-8. PubMed ID: 9722512 [TBL] [Abstract][Full Text] [Related]
6. Identification and classification of genes required for tolerance to freeze-thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains. Ando A; Nakamura T; Murata Y; Takagi H; Shima J FEMS Yeast Res; 2007 Mar; 7(2):244-53. PubMed ID: 16989656 [TBL] [Abstract][Full Text] [Related]
7. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Schmitt AP; McEntee K Proc Natl Acad Sci U S A; 1996 Jun; 93(12):5777-82. PubMed ID: 8650168 [TBL] [Abstract][Full Text] [Related]
8. Intracellular trehalose accumulation via the Agt1 transporter promotes freeze-thaw tolerance in Saccharomyces cerevisiae. Chen A; Gibney PA J Appl Microbiol; 2022 Oct; 133(4):2390-2402. PubMed ID: 35801661 [TBL] [Abstract][Full Text] [Related]
9. Hsp104 contributes to freeze-thaw tolerance by maintaining proteasomal activity in a spore clone isolated from Shirakami kodama yeast. Nakazawa N; Fukuda M; Ashizaki M; Shibata Y; Takahashi K J Gen Appl Microbiol; 2021 Oct; 67(4):170-178. PubMed ID: 34148914 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of the transcription activator Msn2 enhances the fermentation ability of industrial baker's yeast in frozen dough. Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H Biosci Biotechnol Biochem; 2012; 76(3):624-7. PubMed ID: 22451415 [TBL] [Abstract][Full Text] [Related]
11. Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol-tolerance sake yeast Kyokai no. 11. Watanabe M; Tamura K; Magbanua JP; Takano K; Kitamoto K; Kitagaki H; Akao T; Shimoi H J Biosci Bioeng; 2007 Sep; 104(3):163-70. PubMed ID: 17964478 [TBL] [Abstract][Full Text] [Related]
12. Deletion of NTH1 and HSP12 increases the freeze-thaw resistance of baker's yeast in bread dough. Chen BC; Lin HY Microb Cell Fact; 2022 Jul; 21(1):149. PubMed ID: 35879798 [TBL] [Abstract][Full Text] [Related]
13. High hydrostatic pressure activates gene expression through Msn2/4 stress transcription factors which are involved in the acquired tolerance by mild pressure precondition in Saccharomyces cerevisiae. Domitrovic T; Fernandes CM; Boy-Marcotte E; Kurtenbach E FEBS Lett; 2006 Nov; 580(26):6033-8. PubMed ID: 17055490 [TBL] [Abstract][Full Text] [Related]
14. The Saccharomyces cerevisiae flavodoxin-like proteins Ycp4 and Rfs1 play a role in stress response and in the regulation of genes related to metabolism. Cardona F; Orozco H; Friant S; Aranda A; del Olmo Ml Arch Microbiol; 2011 Jul; 193(7):515-25. PubMed ID: 21442317 [TBL] [Abstract][Full Text] [Related]
15. The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway. Park JI; Grant CM; Attfield PV; Dawes IW Appl Environ Microbiol; 1997 Oct; 63(10):3818-24. PubMed ID: 9327544 [TBL] [Abstract][Full Text] [Related]
16. Oxidative stress tolerance of a spore clone isolated from Shirakami kodama yeast depends on altered regulation of Msn2 leading to enhanced expression of ROS-degrading enzymes. Nakazawa N; Yanata H; Ito N; Kaneta E; Takahashi K J Gen Appl Microbiol; 2018 Sep; 64(4):149-157. PubMed ID: 29607878 [TBL] [Abstract][Full Text] [Related]
17. The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes. Versele M; Thevelein JM; Van Dijck P Yeast; 2004 Jan; 21(1):75-86. PubMed ID: 14745784 [TBL] [Abstract][Full Text] [Related]
18. Deficiency in the glycerol channel Fps1p confers increased freeze tolerance to yeast cells: application of the fps1delta mutant to frozen dough technology. Izawa S; Ikeda K; Maeta K; Inoue Y Appl Microbiol Biotechnol; 2004 Dec; 66(3):303-5. PubMed ID: 15278313 [TBL] [Abstract][Full Text] [Related]
19. N-acetyltransferase Mpr1 confers freeze tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Du X; Takagi H J Biochem; 2005 Oct; 138(4):391-7. PubMed ID: 16272133 [TBL] [Abstract][Full Text] [Related]
20. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Du X; Takagi H Appl Microbiol Biotechnol; 2007 Jul; 75(6):1343-51. PubMed ID: 17387467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]