BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35124760)

  • 1. Disruption of YCP4 enhances freeze-thaw tolerance in Saccharomyces cerevisiae.
    Kim HS
    Biotechnol Lett; 2022 Mar; 44(3):503-511. PubMed ID: 35124760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of RIM15 confers an increased tolerance to heavy metals in Saccharomyces cerevisiae.
    Kim HS
    Biotechnol Lett; 2020 Jul; 42(7):1193-1202. PubMed ID: 32248397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing.
    Watanabe D; Sekiguchi H; Sugimoto Y; Nagasawa A; Kida N; Takagi H
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29625985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insufficiency of copper ion homeostasis causes freeze-thaw injury of yeast cells as revealed by indirect gene expression analysis.
    Takahashi S; Ando A; Takagi H; Shima J
    Appl Environ Microbiol; 2009 Nov; 75(21):6706-11. PubMed ID: 19749072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cytoplasmic Cu,Zn superoxide dismutase of saccharomyces cerevisiae is required for resistance to freeze-thaw stress. Generation of free radicals during freezing and thawing.
    Park JI; Grant CM; Davies MJ; Dawes IW
    J Biol Chem; 1998 Sep; 273(36):22921-8. PubMed ID: 9722512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and classification of genes required for tolerance to freeze-thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.
    Ando A; Nakamura T; Murata Y; Takagi H; Shima J
    FEMS Yeast Res; 2007 Mar; 7(2):244-53. PubMed ID: 16989656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae.
    Schmitt AP; McEntee K
    Proc Natl Acad Sci U S A; 1996 Jun; 93(12):5777-82. PubMed ID: 8650168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular trehalose accumulation via the Agt1 transporter promotes freeze-thaw tolerance in Saccharomyces cerevisiae.
    Chen A; Gibney PA
    J Appl Microbiol; 2022 Oct; 133(4):2390-2402. PubMed ID: 35801661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hsp104 contributes to freeze-thaw tolerance by maintaining proteasomal activity in a spore clone isolated from Shirakami kodama yeast.
    Nakazawa N; Fukuda M; Ashizaki M; Shibata Y; Takahashi K
    J Gen Appl Microbiol; 2021 Oct; 67(4):170-178. PubMed ID: 34148914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of the transcription activator Msn2 enhances the fermentation ability of industrial baker's yeast in frozen dough.
    Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H
    Biosci Biotechnol Biochem; 2012; 76(3):624-7. PubMed ID: 22451415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol-tolerance sake yeast Kyokai no. 11.
    Watanabe M; Tamura K; Magbanua JP; Takano K; Kitamoto K; Kitagaki H; Akao T; Shimoi H
    J Biosci Bioeng; 2007 Sep; 104(3):163-70. PubMed ID: 17964478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of NTH1 and HSP12 increases the freeze-thaw resistance of baker's yeast in bread dough.
    Chen BC; Lin HY
    Microb Cell Fact; 2022 Jul; 21(1):149. PubMed ID: 35879798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High hydrostatic pressure activates gene expression through Msn2/4 stress transcription factors which are involved in the acquired tolerance by mild pressure precondition in Saccharomyces cerevisiae.
    Domitrovic T; Fernandes CM; Boy-Marcotte E; Kurtenbach E
    FEBS Lett; 2006 Nov; 580(26):6033-8. PubMed ID: 17055490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Saccharomyces cerevisiae flavodoxin-like proteins Ycp4 and Rfs1 play a role in stress response and in the regulation of genes related to metabolism.
    Cardona F; Orozco H; Friant S; Aranda A; del Olmo Ml
    Arch Microbiol; 2011 Jul; 193(7):515-25. PubMed ID: 21442317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway.
    Park JI; Grant CM; Attfield PV; Dawes IW
    Appl Environ Microbiol; 1997 Oct; 63(10):3818-24. PubMed ID: 9327544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative stress tolerance of a spore clone isolated from Shirakami kodama yeast depends on altered regulation of Msn2 leading to enhanced expression of ROS-degrading enzymes.
    Nakazawa N; Yanata H; Ito N; Kaneta E; Takahashi K
    J Gen Appl Microbiol; 2018 Sep; 64(4):149-157. PubMed ID: 29607878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes.
    Versele M; Thevelein JM; Van Dijck P
    Yeast; 2004 Jan; 21(1):75-86. PubMed ID: 14745784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deficiency in the glycerol channel Fps1p confers increased freeze tolerance to yeast cells: application of the fps1delta mutant to frozen dough technology.
    Izawa S; Ikeda K; Maeta K; Inoue Y
    Appl Microbiol Biotechnol; 2004 Dec; 66(3):303-5. PubMed ID: 15278313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-acetyltransferase Mpr1 confers freeze tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X; Takagi H
    J Biochem; 2005 Oct; 138(4):391-7. PubMed ID: 16272133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X; Takagi H
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1343-51. PubMed ID: 17387467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.