BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35124855)

  • 21. Plasmodesmata in phloem: different gateways for different cargoes.
    Lee JY; Frank M
    Curr Opin Plant Biol; 2018 Jun; 43():119-124. PubMed ID: 29751226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata.
    Balachandran S; Xiang Y; Schobert C; Thompson GA; Lucas WJ
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):14150-5. PubMed ID: 9391168
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling the parameters for plasmodesmal sugar filtering in active symplasmic phloem loaders.
    Liesche J; Schulz A
    Front Plant Sci; 2013; 4():207. PubMed ID: 23802006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmodesmata of maize root tips: structure and composition.
    Turner A; Wells B; Roberts K
    J Cell Sci; 1994 Dec; 107 ( Pt 12)():3351-61. PubMed ID: 7706391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From plasmodesma geometry to effective symplasmic permeability through biophysical modelling.
    Deinum EE; Mulder BM; Benitez-Alfonso Y
    Elife; 2019 Nov; 8():. PubMed ID: 31755863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sieve tube unloading and post-phloem transport of fluorescent tracers and proteins injected into sieve tubes via severed aphid stylets.
    Fisher DB; Cash-Clark CE
    Plant Physiol; 2000 May; 123(1):125-38. PubMed ID: 10806231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sugar loading of crop seeds - a partnership of phloem, plasmodesmal and membrane transport.
    Pegler JL; Grof CP; Patrick JW
    New Phytol; 2023 Sep; 239(5):1584-1602. PubMed ID: 37306002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots.
    Stadler R; Wright KM; Lauterbach C; Amon G; Gahrtz M; Feuerstein A; Oparka KJ; Sauer N
    Plant J; 2005 Jan; 41(2):319-31. PubMed ID: 15634207
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational Tools for Serial Block Electron Microscopy Reveal Plasmodesmata Distributions and Wall Environments.
    Paterlini A; Belevich I; Jokitalo E; Helariutta Y
    Plant Physiol; 2020 Sep; 184(1):53-64. PubMed ID: 32719057
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Callose deposition in the phloem plasmodesmata and inhibition of phloem transport in citrus leaves infected with "Candidatus Liberibacter asiaticus".
    Koh EJ; Zhou L; Williams DS; Park J; Ding N; Duan YP; Kang BH
    Protoplasma; 2012 Jul; 249(3):687-97. PubMed ID: 21874517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. F-actin distribution in root primary tissues of several seed plant species.
    Pesacreta TC
    Am J Bot; 2015 Sep; 102(9):1422-33. PubMed ID: 26391707
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of phloem unloading and root development.
    Liu Z; Ruonala R; Helariutta Y
    J Plant Physiol; 2024 Apr; 295():154203. PubMed ID: 38428153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phloem transport in gymnosperms: a question of pressure and resistance.
    Liesche J; Schulz A
    Curr Opin Plant Biol; 2018 Jun; 43():36-42. PubMed ID: 29304388
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phloem unloading follows an extensive apoplasmic pathway in cucumber (Cucumis sativus L.) fruit from anthesis to marketable maturing stage.
    Hu L; Sun H; Li R; Zhang L; Wang S; Sui X; Zhang Z
    Plant Cell Environ; 2011 Nov; 34(11):1835-48. PubMed ID: 21707653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A shift of Phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry.
    Zhang XY; Wang XL; Wang XF; Xia GH; Pan QH; Fan RC; Wu FQ; Yu XC; Zhang DP
    Plant Physiol; 2006 Sep; 142(1):220-32. PubMed ID: 16861573
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phloem loading in two Scrophulariaceae species. What can drive symplastic flow via plasmodesmata?
    Voitsekhovskaja OV; Koroleva OA; Batashev DR; Knop C; Tomos AD; Gamalei YV; Heldt HW; Lohaus G
    Plant Physiol; 2006 Jan; 140(1):383-95. PubMed ID: 16377750
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amborella trichopoda, plasmodesmata, and the evolution of phloem loading.
    Turgeon R; Medville R
    Protoplasma; 2011 Jan; 248(1):173-80. PubMed ID: 21080011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. What determines the composition of the phloem sap? Is there any selectivity filter for macromolecules entering the phloem sieve elements?
    Garg V; Kühn C
    Plant Physiol Biochem; 2020 Jun; 151():284-291. PubMed ID: 32248039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overexpression of Arabidopsis plasmodesmata germin-like proteins disrupts root growth and development.
    Ham BK; Li G; Kang BH; Zeng F; Lucas WJ
    Plant Cell; 2012 Sep; 24(9):3630-48. PubMed ID: 22960910
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peeking at a plant through the holes in the wall - exploring the roles of plasmodesmata.
    Lu KJ; Danila FR; Cho Y; Faulkner C
    New Phytol; 2018 Jun; 218(4):1310-1314. PubMed ID: 29574753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.