These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 35124999)

  • 21. A role for phenotypic plasticity in the evolution of aposematism.
    Sword GA
    Proc Biol Sci; 2002 Aug; 269(1501):1639-44. PubMed ID: 12204123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The first shrimp preserved in mid-cretaceous Kachin amber: systematics, palaeoecology, and taphonomy.
    Xing L; Liu Y; McKellar RC; Luque J; Li G; Wang Y; Yi Q; Sun R; Wang E; Audo D
    Sci Bull (Beijing); 2021 Sep; 66(17):1723-1726. PubMed ID: 36654378
    [No Abstract]   [Full Text] [Related]  

  • 23. Conspicuous coloration of toxin-resistant predators implicates additional trophic interactions in a predator-prey arms race.
    Hague MTJ; Miller LE; Stokes AN; Feldman CR; Brodie ED; Brodie ED
    Mol Ecol; 2023 Aug; 32(16):4482-4496. PubMed ID: 36336815
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New fossil ants in French Cretaceous amber (Hymenoptera: Formicidae).
    Perrichot V; Nel A; Néraudeau D; Lacau S; Guyot T
    Naturwissenschaften; 2008 Feb; 95(2):91-7. PubMed ID: 17828384
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of predator learning, forgetting, and recognition errors on the evolution of warning coloration.
    Servedio MR
    Evolution; 2000 Jun; 54(3):751-63. PubMed ID: 10937250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First Fossil Record of
    Li Y; Ebihara A; Nosova N; Tan ZZ; Cui YM
    Life (Basel); 2023 Aug; 13(8):. PubMed ID: 37629566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aposematism in mammals.
    Howell N; Sheard C; Koneru M; Brockelsby K; Ono K; Caro T
    Evolution; 2021 Oct; 75(10):2480-2493. PubMed ID: 34347894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pattern variation is linked to anti-predator coloration in butterfly larvae.
    McLellan CF; Cuthill IC; Montgomery SH
    Proc Biol Sci; 2023 Jun; 290(2001):20230811. PubMed ID: 37357867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Avian predators attack aposematic prey more forcefully when they are part of an aggregation.
    Skelhorn J; Ruxton GD
    Biol Lett; 2006 Dec; 2(4):488-90. PubMed ID: 17148269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mesozoic evolution of cicadas and their origins of vocalization and root feeding.
    Jiang H; Szwedo J; Labandeira CC; Chen J; Moulds MS; Mähler B; Muscente AD; Zhuo D; Nyunt TT; Zhang H; Wei C; Rust J; Wang B
    Nat Commun; 2024 Jan; 15(1):376. PubMed ID: 38191461
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pinguisoperla, a new fossil genus of Perlidae (Insecta: Plecoptera) from mid-Cretaceous Burmese amber.
    Chen ZT
    Zootaxa; 2018 May; 4425(3):596-600. PubMed ID: 30313306
    [TBL] [Abstract][Full Text] [Related]  

  • 32. First record of fossil psocodeans in copula from mid-Cretaceous Burmese amber.
    Hakim M; Azar D; Huang DY
    Zootaxa; 2023 Dec; 5396(1):74-93. PubMed ID: 38220979
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Li YD; Kolibáč J; Liu ZH; Ślipiński A; Yamamoto S; Yu YL; Zhang WT; Cai CY
    Ecol Evol; 2024 Jul; 14(7):e11589. PubMed ID: 38979007
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aposematic signalling in prey-predator systems: determining evolutionary stability when prey populations consist of a single species.
    Scaramangas A; Broom M
    J Math Biol; 2022 Jul; 85(2):13. PubMed ID: 35870017
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new genus of japygids (Diplura: Japygidae) in mid-Cretaceous amber from northern Myanmar.
    Wang YH; Huang DY; Cai CY
    Zootaxa; 2023 Dec; 5396(1):64-73. PubMed ID: 38220980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for a peak-shift in predator generalization among aposematic prey.
    Gamberale G; Tullberg BS
    Proc Biol Sci; 1996 Oct; 263(1375):1329-34. PubMed ID: 8914330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Environment-dependent attack rates of cryptic and aposematic butterflies.
    Seymoure BM; Raymundo A; McGraw KJ; Owen McMillan W; Rutowski RL
    Curr Zool; 2018 Oct; 64(5):663-669. PubMed ID: 30323845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Brood care in a 100-million-year-old scale insect.
    Wang B; Xia F; Wappler T; Simon E; Zhang H; Jarzembowski EA; Szwedo J
    Elife; 2015 Mar; 4():. PubMed ID: 25824055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Body size matters for aposematic prey during predator aversion learning.
    Smith KE; Halpin CG; Rowe C
    Behav Processes; 2014 Nov; 109 Pt B():173-9. PubMed ID: 25256160
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Social learning within and across predator species reduces attacks on novel aposematic prey.
    Hämäläinen L; Mappes J; Rowland HM; Teichmann M; Thorogood R
    J Anim Ecol; 2020 May; 89(5):1153-1164. PubMed ID: 32077104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.