BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35125243)

  • 21. Potential factors contributing to observed sex differences in virtual-reality-induced sickness.
    Bannigan GM; de Sousa AA; Scheller M; Finnegan DJ; Proulx MJ
    Exp Brain Res; 2024 Feb; 242(2):463-475. PubMed ID: 38170233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Upper Extremity Rehabilitation Using Fully Immersive Virtual Reality Games With a Head Mount Display: A Feasibility Study.
    Lee SH; Jung HY; Yun SJ; Oh BM; Seo HG
    PM R; 2020 Mar; 12(3):257-262. PubMed ID: 31218794
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters.
    Borrego A; Latorre J; Llorens R; Alcañiz M; Noé E
    J Neuroeng Rehabil; 2016 Aug; 13(1):68. PubMed ID: 27503112
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of visual fatigue caused by head-mounted display for virtual reality and two-dimensional display using objective and subjective evaluation.
    Hirota M; Kanda H; Endo T; Miyoshi T; Miyagawa S; Hirohara Y; Yamaguchi T; Saika M; Morimoto T; Fujikado T
    Ergonomics; 2019 Jun; 62(6):759-766. PubMed ID: 30773103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Psychometric evaluation of Simulator Sickness Questionnaire and its variants as a measure of cybersickness in consumer virtual environments.
    Sevinc V; Berkman MI
    Appl Ergon; 2020 Jan; 82():102958. PubMed ID: 31563798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Virtual and augmented reality in a simulated naval engagement: Preliminary comparisons of simulator sickness and human performance.
    Pettijohn KA; Peltier C; Lukos JR; Norris JN; Biggs AT
    Appl Ergon; 2020 Nov; 89():103200. PubMed ID: 32658772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing Visual Exploration through Augmented Gaze: High Acceptance of Immersive Virtual Biking by Oldest Olds.
    de'Sperati C; Dalmasso V; Moretti M; Høeg ER; Baud-Bovy G; Cozzi R; Ippolito J
    Int J Environ Res Public Health; 2023 Jan; 20(3):. PubMed ID: 36767037
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Evaluation of the effectiveness of immersive virtual reality-based exercise system for vestibular rehabilitation].
    Jiao Y; Lin Y; Zhang X; Wu Y; Wang J; Liang Z
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2020 May; 34(5):447-451. PubMed ID: 32791618
    [No Abstract]   [Full Text] [Related]  

  • 29. Improvement of three-dimensional motion sickness using a virtual reality simulator for robot-assisted surgery in undergraduate medical students: A prospective observational study.
    Takata R; Kanehira M; Kato Y; Matsuura T; Kato R; Maekawa S; Obara W
    BMC Med Educ; 2021 Sep; 21(1):498. PubMed ID: 34548032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vestibular rehabilitation potential of commercially available virtual reality video games.
    Heffernan A; Booth L; Fletcher R; Nunez DA
    J Otolaryngol Head Neck Surg; 2023 Aug; 52(1):54. PubMed ID: 37605253
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contextual sensory integration training via head mounted display for individuals with vestibular disorders: a feasibility study.
    Lubetzky AV; Kelly J; Wang Z; Gospodarek M; Fu G; Sutera J; Hujsak BD
    Disabil Rehabil Assist Technol; 2022 Jan; 17(1):74-84. PubMed ID: 32421374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation of Excitability in the Temporoparietal Junction Relieves Virtual Reality Sickness.
    Takeuchi N; Mori T; Suzukamo Y; Izumi SI
    Cyberpsychol Behav Soc Netw; 2018 Jun; 21(6):381-387. PubMed ID: 29792509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactive 3-dimensional virtual reality rehabilitation for patients with chronic imbalance and vestibular dysfunction.
    Yeh SC; Chen S; Wang PC; Su MC; Chang CH; Tsai PY
    Technol Health Care; 2014; 22(6):915-21. PubMed ID: 25159998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Postural instability according to virtual reality program.
    Im H; Kim TH; Bang SH; Lee JK; Song JJ; Chae SW
    Acta Otolaryngol; 2019 Aug; 139(8):697-700. PubMed ID: 31144546
    [No Abstract]   [Full Text] [Related]  

  • 35. Effect of viewing mode on pathfinding in immersive Virtual Reality.
    White PJ; Byagowi A; Moussavi Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4619-22. PubMed ID: 26737323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Leveraging virtual reality for vestibular testing: Clinical outcomes from tests of dynamic visual acuity.
    Holford KC; Jagodinsky AE; Saripalle R; McAllister P
    J Vestib Res; 2022; 32(1):15-20. PubMed ID: 34633336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enabling More Accessible MS Rehabilitation Training Using Virtual Reality.
    Soomal HK; Poyade M; Rea PM; Paul L
    Adv Exp Med Biol; 2020; 1262():95-114. PubMed ID: 32613581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis on Mitigation of Visually Induced Motion Sickness by Applying Dynamical Blurring on a User's Retina.
    Nie GY; Duh HB; Liu Y; Wang Y
    IEEE Trans Vis Comput Graph; 2020 Aug; 26(8):2535-2545. PubMed ID: 30668475
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comparative study of navigation interfaces in virtual reality environments: A mixed-method approach.
    Kim YM; Rhiu I
    Appl Ergon; 2021 Oct; 96():103482. PubMed ID: 34116411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study.
    Perez-Marcos D; Chevalley O; Schmidlin T; Garipelli G; Serino A; Vuadens P; Tadi T; Blanke O; Millán JDR
    J Neuroeng Rehabil; 2017 Nov; 14(1):119. PubMed ID: 29149855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.